Synesis Software Resources: I olvln]zls S Synesis Software Pty Ltd
White Papers = ' http://www.synesis.com.au
M. D. Wilson, “ Safe CString Buffer Access” Updated: 4th May 2006

M. D. Wilson, "Safe CString Buffer Access"

The cstring dass is desgned to fully-encapsulate a character buffer in an object, and provides
many manipuletion methods for deding with the represented dring, caering for most
crecumgances commonly encountered. Such classes in generd, and the cstring in paticular,
enable the C++ programmer to treat strings as fird-class objects rather than C-gtyle strings.

However, there are two circumstances in which tregting strings as objects is not sufficient, both
involving interactions with API functions thet require C-style strings.

char const *

When dgring contents are required in non-modifigble form (which is the predominant case), they
are usudly specified aspointerstoconst char (orconst wchar _t), asin

BOOL Set W ndowText (HAND hwnd, TCHAR const *strText);

For this purpose, cstring provides the operator TCHAR const *() const method - where TCHAR IS
a pre-processor symbol that is defined as char in ANS compilaions and as wehar _t in Unicode
compilations - which smply returns a pointer to the start of the object's character buffer. Hence,
the following codeislegd

CString s(_T("the string"));
int i =strlen(s);

char *

On some occasions, access to modifiable character buffersisrequired, asin

DWORD Get Qurrent Di rect ory(DANORD cch, TCHAR *s);

The cstring class does not have an operator TCHAR *(), and even if it did, there could be
problems - what would happen if the current space for the buffer is not enough for the AF cal to
use? To address this, cstring provides the GetBuffer() and GetBuffer Set Lengt h() methods with
which the cdling gpplication may get a modifisble pointer (TcHarR *) to the object's interna
character buffer. From the point of cal of either of these functions the internal character buffer is
notionally locked, and no other non-const member functions should be called. Once the cdling
code is finished with the interna character buffer, the method Rel easeBuffer() should be cdled,
to indicate to the St ri ng instance that its interna buffer contents may have changed and to
prompt it to re-establish the correct ingtance gtring length (viast r1 en() /wesl en()).

Theproblem
Unfortunately the use of these functions presents a number of potentid problems.

Synesis Software Resources: I olvln]zls S Synesis Software Pty Ltd
White Papers = ' http://www.synesis.com.au
M. D. Wilson, “ Safe CString Buffer Access” Updated: 4th May 2006

Frdly, the idea of dlowing dient code to manipulate the internd workings of objects over
which the implementors of the object's class have no control, is a bad idea Whatever the
rationde for the provison and use of these methods, they are inherently unsafe and represent a
danger. Whilgt the technique provided here does not address this issue directly, it does help to
limit the possibilities of the potential misuse of these direct-access methods.

Secondly, it is possble to forget to cal Rel easeBuffer(), dther by one of multiple return paths
not making such a cdl or by functions caled between the cals to GetBuffer(SetLength) () and
Rel easeBuf fer () throwing an exception. In this case the cdl t0 Rel easeBuffer() is log, and the
string contents may be corrupted.

An example demondtrating these problemsis asfollows.

CString str;

LPCTSTR psz = str. Get Buf f er (_MAX_PATH);
LoadFi el dFr onDat abase(psz);

str. Rel easeBuffer();

WiteResult(str);

If LoadFi el dFr onDat abase() throws an exception, then the call to Rel easeBuf f er () iSl0H.
The solution

The solution is in the foom of the MFCSTL librarieS grab_cstring buffer class. The class
declaration is shown below. The full implementation is available from the MFCSTL web site.

/1 class grab_cstring_buffer
class grab_cstring_buffer
{
publ i c:
typedef grab_cstring_buffer cl ass_type;

/1 Construction

publ i c:
grab_cstring_buffer(CString &tr, int length); // throw CvenoryException *)
~grab_cstring_buffer() throw);

/'l Conversion operators

publ i c:
operator LPTSTR();
operator LPCTSTR() const;

/1 Attributes
publ i c:
int length() const;
int original_length() const;

Synesis Software Resources: I olvln]zls S Synesis Software Pty Ltd
White Papers = ' http://www.synesis.com.au
M. D. Wilson, “ Safe CString Buffer Access” Updated: 4th May 2006
Il Members
pr ot ect ed:
CString &mstr;
const int m | en;
const int m ori gi nal Len;

const LPTSTR m psz;

/1l Not to be inplenented
pri vat e:
grab_cstring_buffer(class_type const &rhs);
const grab_cstring_buffer &operator =(class_type const &rhs);

3

In its congtructor, a reference to the cstring ingance is taken, the origind length is remembered,
and the modifiadble character buffer pointer is obtained. If an exception is thrown in the cdl to
GetBuf fer() then the object is not constructed, and exception safety is preserved. Once the object
is fully congructed, then any exception thrown by a cdled function will result in the destructor,
and therefore Rel easeBuffer(), being cdled, so exception safety is preserved. Access to the
buffer is via the operator LPTSTR () method, and access to the origind and requested lengths is
viatheori gi nal _I engt h() and 1 engt h() methods respectively.

There are three advantages to the use of this class.

It is no longer possble that the cal to Rel easeBuffer() can be forgotten, whether from smple
omisson or by having possble return paths from functions caling Get Buf f er (Set Length) (). The
grab_cstring_buffer class automaticaly cdls Rel easeBuffer() oOn the cstring indance in its
destructor.

The actud length of the cstring instances character buffer is logt as soon as the cydle is
entered, and may @ may not be the same as the requested length. The provison of the 1 engt h()
and original _| engt h() enable access to relidble vaues of these atributes, which dso facilitates
thegrab_cst ri ng_buf f er being passed in function arguments.

Since the gring should not be used during the Get Buf f er (Set Lengt h)() => Rel easeBuffer ()
cyde, it is safer to reduce the Sze of these cycles to a minimum. Using the grab_cstri ng_buf f er
class the previous example code block can be written as follows.

CString str;
LoadFi el dFr onDat abase(nfcstl::grab_cstring_buffer(str, _MAX PATH));
WiteResul t(str);

Since the grab_cstring_buffer class manipulates the cstring ingance in its dedructor, the
lifetime of the cstring must encapsulate that of the grab_cstring_buffer indance This usudly
presents no problem, since the cstring ingtance can only be assigned to the grab_cstring_buf f er
instance in its congtructor.

3/3

Synesis Software Resources: I olvln]zls S Synesis Software Pty Ltd
White Papers = ' http://www.synesis.com.au
M. D. Wilson, “ Safe CString Buffer Access” Updated: 4th May 2006

Y ou should aso be wary of writing code such as the following:

{
CString str;
nfcstl::grab_cstring_buffer gesb(str, _MAX PATH);
LoadFi el dFr onDat abase(gcsb) ;
WiteResult(str);

}

gnce the gesb variable will not be destroyed prior to the cal to wi teResul t (), which means that
it will not have cdled ReleaseBuffer() oOn str. Although cdling cong member functions on
CSring indances indde the GetBuffer(SetLength)() => ReleaseBuffer() cyde is legitimate, it
would be dl too easy to make a call to a non-const member, eg. MakeUpper(), within this Hock
of code. Hence the use of the inline form is preferred, as there are no such issues. the
grab_cstring_buffer instances are temporaries, grabbing and releasing cstring buffers and then
disappearing before they can do any damage.

Copyright © 1998, 2002, 2006 by M atthew Wilson

The text of this article origindly referred to the Syness Software G abcCstringBuf fer class. This
classwas moved into the MFCSTL librariesin 2002, and this article updated accordingly.

4/4

