
Synesis Software Resources:
White Papers

Synesis Software Pty Ltd
http://www.synesis.com.au

M. D. Wilson, “Veneers – A Definition” Updated: 16th November 2002

1 / 2

M. D. Wilson, "Veneers – A Definition"

The concept of veneers is exceedingly simple. A veneer is a template class with the following
characteristics:

1) It derives from its primary parameterising type, usually publicly
2) It does not define any virtual methods
3) It does not define any non-static member variables, including not defining a virtual

destructor
4) Further to 2) and 3), it does not increase the memory footprint of the parameterised

composite type over that of the parameterising type.

Veneers usually modify the behaviour – supplementing existing functionality with additional
functionality obtained from the secondary parameterising types – or the type of the
parameterising type.

Consider a situation where you wish to inject functionality into an already rich hierarchy. An
example of this could be when using the ATL [1] class, CCWWiinnddooww. The class does not have a
member function to get the text length of a dialog item. Making use of the Win32 API function
GGeettWWiinnddoowwTTeexxttLLeennggtthh(()), and the member function GGeettDDllggIItteemm(()), we can create the veneer class
ppaarreenntt__wwiinnddooww__vveenneeeerr [SY-ATL], defined as follows:

 tteemmppllaattee <<ttyyppeennaammee TT>>
 ccllaassss ppaarreenntt__wwiinnddooww__vveenneeeerr
 :: ppuubblliicc TT
 {{
 ppuubblliicc::
 ttyyppeeddeeff TT PPaarreennttCCllaassss;;
 ttyyppeeddeeff ppaarreenntt__wwiinnddooww__vveenneeeerr<<TT>> CCllaassss;;

 //// CCoonnssttrruuccttiioonn
 ppuubblliicc::

 //// OOppeerraattiioonnss
 ppuubblliicc::
 iinntt GGeettDDllggIItteemmTTeexxttLLeennggtthh((UUIINNTT iidd))
 {{
 rreettuurrnn ::::GGeettWWiinnddoowwTTeexxttLLeennggtthh((GGeettDDllggIItteemm((iidd))));;
 }}
 }};;

Wherever one might use the CCWWiinnddooww class, ppaarreenntt__wwiinnddooww__vveenneeeerr<<CCWWiinnddooww>> (or a typedef
specifying such) can be used instead, and the method GGeettDDllggIItteemmTTeexxttLLeennggtthh(()) is accessible on
instances of that type, or any derived types. Of course, this could be achieved with conventional
non-template derivation. However, if one later had reason to want to see this function in another
ATL windowing class, say CCCCoonnttaaiinneeddWWiinnddooww, then another derived class would be needed, and so
on. The veneer can be easily used with other types of windowing classes which have a

Synesis Software Resources:
White Papers

Synesis Software Pty Ltd
http://www.synesis.com.au

M. D. Wilson, “Veneers – A Definition” Updated: 16th November 2002

2 / 2

compatible GGeettDDllggIItteemm(()) member function, and all that is needed is to change the declaration,
usually amounting to a single change to a typedef .

Veneers also can provide a destructor, although one needs to be careful and respect that if the
parameterising type is not a polymorphically derivable type (i.e. if it does not have a virtual
destructor) then it should not be used polymorphically.

Finally, because veneers are the same size as, and publicly inherit from, their parameterising
types, they can be used to substitute for them in situations requiring arrays.

The advantages of veneers are, then:

• They facilitate the injection of code into an inheritance hierarchy without duplication of
code

• They can be used to add the automatic cleaning up of resources (via the Resource
Acquisition Is Initialisation idiom [3]) into existing classes. (The STLSoft libraries’ [4]
container veneers provide this functionality for container classes in the C++ standard
library)

• The size restrictions means that the parameterised veneer type can be used in array form
without experiencing the problems [5] associated with polymorphic arrays

Some real examples of veneers are available from the STLSoft libraries [4], and include
ppoodd__vveenneeeerr, ccoonnvveerrssiioonn__vveenneeeerr, sseeqquueennccee__ccoonnttaaiinneerr__vveenneeeerr and aassssoocciiaattiivvee__ccoonnttaaiinneerr__vveenneeeerr.
For more detail on the concept of veneers, please consult the documentation for these classes.

Notes and References
[1] The ActiveX Template Library. This ships with Microsoft’s Visual C++ compiler
(http://www.microsoft.com), and Digital Mars C++ compiler (http://digitalmars.com)
[2] The Synesis Software Public-domain Source Code Library contains a fully-fledged version of
this veneer class, available online at http://synesis.com.au/software
[3] Bjarne Stroustrup, “The C++ Programming Language”, Third Edition, Addison-Wesley, 1997
[4] The STLSoft libraries are available online at http://stlsoft.org
[5] Scott Meyers, “More Effective STL”, Addison-Wesley, 1997. Item #3

Copyright © 2001, 2002 by Matthew Wilson. matthew@synesis.com.au

