Synesis Software Resources: I olvln]zls S Synesis Software Pty Ltd
White Papers = ' http://www.synesis.com.au
M. D. Wilson, “Shims — A Definition” Updated: 4" May 2006

M. D. Wilson, "Shims — A Definition"

Shims ae lightweight components — comprisng free-functions and smart-pointer classes — which
ae ud in the manipulation and converson of types They fadlitate generdissed manipulation of
sets of types that are related conceptudly but not by type, eg. raw and smart pointers, Gdyle
gringsand st d: : basi c_st ri ng<>.

A shimisan unbound st of functions sharing four characteridtics:
Name. The name of the shim corresponds to the name of the shim functions, eg. the
functionsof thec_str_ptr shimaredl c_str_ptr ().
Namespace. All functions for agiven shim reside in a common namespace
Category. One of the four main shim categories — Attribute Shim, Control Shim,
Conversion Shim, Logical Shim — or a composite category (comprising the features of two
or more fundamenta categories).
Result Type. The result type(s) of the functions of a given shim are depending on the
shim category. In the case of Conversion Shims dl shim functions return a common result
typeR, or an ingance of atypethat isimplicitly convertibleto R.

Thefollowing fundamenta shim categories are defined:

Fundamental Shim Categories
Attribute Shims

Attribute shims access attributes, or state, of the (instances of the) types for which types tey are
defined.

Attribute shims are named according to the get _xxx() form, eg. get _ptr ().

Example:

tenpl ate <typenanme T>
inline T *get_ptr(T *p)
{

}

tenpl ate <typenanme T>
inline T *get_ptr(std::auto_ptr<T> &p)

{
}

return p;

return p.get();

1/1



Synesis Software Resources: I olvln]zls S Synesis Software Pty Ltd
White Papers = ' http://www.synesis.com.au
M. D. Wilson, “Shims — A Definition” Updated: 4" May 2006

One can now write a template (or opentsource code where the types are selected by the pre-
processor) that will manipulate pointers in a generdised way, by accessng them through
get_ptr().

Attribute shims return the type being accessed.

Attribute shims may throw exceptions, though thisis not usud.

Control Shims

Control shims define operations that are gpplied to the ingances of the types for which they are
defined.

Control shims have a less drict naming convention than the three other fundamentd shim
concepts, because the operations they perform can be quite diverse. All the names take a verb
form, and refer to the action performed, e.g. make_enpt y(), renove_al | (), €tc.

Control shims usudly return void, but may return a boolean indication of success, or a count
representing the number of items affected or operations carried out.

Control shims may throw exceptions.

Conversion Shims

Conversion shims operate by converting one type to another. For instance, a to_int() converson
shim would operate on instances of whatever type, such that it returned an int.

Example

inline int to_int(int i)

{
}

inline int to_int(char const *s)

{
}

return i;

return atoi(s);

Conversion shims are named according to thet o_xxx() form, eg. t o_doubl e() .

Where the return vaue is to a complex or pointer type, the shim may be implemented by
returning a temporary vaiable. Converson shim return vaues must, therefore, be used within
thelr defining expression, rather than assgned to a variable and used a a later stage (which would
result in undefined behaviour — a crash in other words).

2/2



Synesis Software Resources: I olvln]zls S Synesis Software Pty Ltd
White Papers = ' http://www.synesis.com.au
M. D. Wilson, “Shims — A Definition” Updated: 4" May 2006

Congder a converson shim that returns a pointer to a C-gyle dring from a Win32 window
handle, by cregting an intermediary smart-pointer proxy instance.

class c_str_ptr_HAND proxy
{

operat or char const *() const

b
c_str_ptr_HWND proxy c_str_ptr(HAD hwnd);

The following code is ok, because the converson is done and used within the same expression, so
the pointer used while the temporary lives.

puts(c_str_ptr(hwnd));

The following code is not, because the returned vaue is hed in s after the temporary has been
destroyed, and will point to something that is now undefined.

char const *s = c_str_ptr(hwnd);

puts(s); // Error! s points to who know s what

Conversion shims may throw exceptions.

Logical Shims

Logicd shims, like Attribute shims, in that they report on the dtate of an ingance to which they
are goplied. They differ in that they pertain to logica conceptsonly, eg.is_open(), i s_enpty().

Example

tenpl at e <typenane C
inline bool is_enpty(std::basic_string<C> const &s)
{

}

inline bool is_enpty(char const *s)

{
}

return s.enpty();

return *s == ‘\0’;

Logicd shimsreturn aboolean vadue.

Logicad shimsdo not throw exceptions.

3/3



Synesis Software Resources: I olvln]zls S Synesis Software Pty Ltd
White Papers = ' http://www.synesis.com.au
M. D. Wilson, “Shims — A Definition” Updated: 4" May 2006

Composite Shim Concepts

Composite shim concepts are those composed of two or more of the fundamental concepts. At
this time one composite shim concept is defined, Access Shims

Access Shims

Access shims are notiondly amilar to atribute shims, but they operate on a wider variety of
types. The STLSoft converson library’s [1] c_str_ptr() access shim is a good example. For G
dyle drings, and most dring classes (induding std: : basi c_string<> and MFC's cstring) the
shim functions follow the dtribute shim concept. For more complex string types (eg. Win32's
LSA_UNI CODE_STRING, which is not null-terminated) and non-string types (e.g. window handles,
COM’s var ANT type, €etc.) the shim functions follow the converson shim concept. Hence the
limitation of converson shims appliesto dl access shims.

(An atide etitled “Generdised String Manipulation: Access Shims and Type Tunndling”,
which goes into greater detail an the concept of access shims, was published in the August 2003
issue of C/C++ User’s Journal.)

Access shims do not adways follow a drict naming convention. The c¢_str_ptr() shim is a good
example: it is named after the sandard library’ sbasi ¢_string’Sc_st r () method.

Access shims return the type being accessed, or a smat-pointer intermediary that can be
converted to that type.

Access shims may throw exceptions.

Notes and References

[1] The STLSoft libraries are available online a hitp:/stlsoft.org.
[2] Shims are covered in Chapter 20 of Imperfect C++, Matthew Wilson, Addison Wed ey 2004.

Copyright © 2000 — 2003, 2006 by Matthew Wilson.
matthew@synesis.com.au

4/4



