
Synesis Software Resources:
White Papers

Synesis Software Pty Ltd
http://www.synesis.com.au

M. D. Wilson, “Shims – A Definition” Updated: 4th May 2006

1 / 1

M. D. Wilson, "Shims – A Definition"

Shims are lightweight components – comprising free-functions and smart-pointer classes – which
are used in the manipulation and conversion of types. They facilitate generalised manipulation of
sets of types that are related conceptually but not by type, e.g. raw and smart pointers, C-style
strings and ssttdd::::bbaassiicc__ssttrriinngg<<>>.

A shim is an unbound set of functions sharing four characteristics:

• Name . The name of the shim corresponds to the name of the shim functions, e.g. the
functions of the c_str_ptr shim are all cc__ssttrr__ppttrr(()).

• Namespace. All functions for a given shim reside in a common namespace
• Category. One of the four main shim categories – Attribute Shim, Control Shim,

Conversion Shim, Logical Shim – or a composite category (comprising the features of two
or more fundamental categories).

• Result Type . The result type(s) of the functions of a given shim are depending on the
shim category. In the case of Conversion Shims, all shim functions return a common result
type RR, or an instance of a type that is implicitly convertible to RR.

The following fundamental shim categories are defined:

Fundamental Shim Categories

Attribute Shims

Attribute shims access attributes, or state, of the (instances of the) types for which types they are
defined.

Attribute shims are named according to the ggeett__xxxxxx(()) form, e.g. ggeett__ppttrr(()).

Example:

 tteemmppllaattee <<ttyyppeennaammee TT>>
 iinnlliinnee TT **ggeett__ppttrr((TT **pp))
 {{
 rreettuurrnn pp;;
 }}

 tteemmppllaattee <<ttyyppeennaammee TT>>
 iinnlliinnee TT **ggeett__ppttrr((ssttdd::::aauuttoo__ppttrr<<TT>> &&pp))
 {{
 rreettuurrnn pp..ggeett(());;
 }}

Synesis Software Resources:
White Papers

Synesis Software Pty Ltd
http://www.synesis.com.au

M. D. Wilson, “Shims – A Definition” Updated: 4th May 2006

2 / 2

One can now write a template (or open-source code where the types are selected by the pre-
processor) that will manipulate pointers in a generalised way, by accessing them through
ggeett__ppttrr(()).

Attribute shims return the type being accessed.

Attribute shims may throw exceptions, though this is not usual.

Control Shims

Control shims define operations that are applied to the instances of the types for which they are
defined.

Control shims have a less strict naming convention than the three other fundamental shim
concepts, because the operations they perform can be quite diverse. All the names take a verb
form, and refer to the action performed, e.g. mmaakkee__eemmppttyy(()), rreemmoovvee__aallll(()), etc.

Control shims usually return void, but may return a boolean indication of success, or a count
representing the number of items affected or operations carried out.

Control shims may throw exceptions.

Conversion Shims

Conversion shims operate by converting one type to another. For instance, a ttoo__iinntt(()) conversion
shim would operate on instances of whatever type, such that it returned an int.

Example:

 iinnlliinnee iinntt ttoo__iinntt((iinntt ii))
 {{
 rreettuurrnn ii;;
 }}

 iinnlliinnee iinntt ttoo__iinntt((cchhaarr ccoonnsstt **ss))
 {{
 rreettuurrnn aattooii((ss));;
 }}

Conversion shims are named according to the ttoo__xxxxxx(()) form, e.g. ttoo__ddoouubbllee(()).

Where the return value is to a complex or pointer type, the shim may be implemented by
returning a temporary variable. Conversion shim return values must, therefore, be used within
their defining expression, rather than assigned to a variable and used at a later stage (which would
result in undefined behaviour – a crash in other words).

Synesis Software Resources:
White Papers

Synesis Software Pty Ltd
http://www.synesis.com.au

M. D. Wilson, “Shims – A Definition” Updated: 4th May 2006

3 / 3

Consider a conversion shim that returns a pointer to a C-style string from a Win32 window
handle, by creating an intermediary smart-pointer proxy instance.

 ccllaassss cc__ssttrr__ppttrr__HHWWNNDD__pprrooxxyy
 {{

 ooppeerraattoorr cchhaarr ccoonnsstt **(()) ccoonnsstt
 {{

 }}
 }};;

 cc__ssttrr__ppttrr__HHWWNNDD__pprrooxxyy cc__ssttrr__ppttrr((HHWWNNDD hhwwnndd));;

The following code is ok, because the conversion is done and used within the same expression, so
the pointer used while the temporary lives.

 ppuuttss((cc__ssttrr__ppttrr((hhwwnndd))));;

The following code is not, because the returned value is held in s after the temporary has been
destroyed, and will point to something that is now undefined.

 cchhaarr ccoonnsstt **ss == cc__ssttrr__ppttrr((hhwwnndd));;

 ppuuttss((ss));; //// EErrrroorr!! ss ppooiinnttss ttoo wwhhoo kknnooww’’ss wwhhaatt

Conversion shims may throw exceptions.

Logical Shims

Logical shims, like Attribute shims, in that they report on the state of an instance to which they
are applied. They differ in that they pertain to logical concepts only, e.g. iiss__ooppeenn(()), iiss__eemmppttyy(()).

Example:

 tteemmppllaattee <<ttyyppeennaammee CC>>
 iinnlliinnee bbooooll iiss__eemmppttyy((ssttdd::::bbaassiicc__ssttrriinngg<<CC>> ccoonnsstt &&ss))
 {{
 rreettuurrnn ss..eemmppttyy(());;
 }}

 iinnlliinnee bbooooll iiss__eemmppttyy((cchhaarr ccoonnsstt **ss))
 {{
 rreettuurrnn **ss ==== ‘‘\\00’’;;
 }}

Logical shims return a boolean value.

Logical shims do not throw exceptions.

Synesis Software Resources:
White Papers

Synesis Software Pty Ltd
http://www.synesis.com.au

M. D. Wilson, “Shims – A Definition” Updated: 4th May 2006

4 / 4

Composite Shim Concepts

Composite shim concepts are those composed of two or more of the fundamental concepts. At
this time one composite shim concept is defined, Access Shims

Access Shims
Access shims are notionally similar to attribute shims, but they operate on a wider variety of
types. The STLSoft conversion library’s [1] cc__ssttrr__ppttrr(()) access shim is a good example. For C-
style strings, and most string classes (including ssttdd::::bbaassiicc__ssttrriinngg<<>> and MFC’s CCSSttrriinngg) the
shim functions follow the attribute shim concept. For more complex string types (e.g. Win32’s
LLSSAA__UUNNIICCOODDEE__SSTTRRIINNGG, which is not null-terminated) and non-string types (e.g. window handles,
COM’s VVAARRIIAANNTT type, etc.) the shim functions follow the conversion shim concept. Hence the
limitation of conversion shims applies to all access shims.

(An article entitled “Generalised String Manipulation: Access Shims and Type Tunnelling”,
which goes into greater detail on the concept of access shims, was published in the August 2003
issue of C/C++ User’s Journal.)

Access shims do not always follow a strict naming convention. The cc__ssttrr__ppttrr(()) shim is a good
example: it is named after the standard library’s bbaassiicc__ssttrriinngg’s cc__ssttrr(()) method.

Access shims return the type being accessed, or a smart-pointer intermediary that can be
converted to that type.

Access shims may throw exceptions.

Notes and References
[1] The STLSoft libraries are available online at http://stlsoft.org.
[2] Shims are covered in Chapter 20 of Imperfect C++, Matthew Wilson, Addison-Wesley 2004.

Copyright © 2000 – 2003, 2006 by Matthew Wilson.
matthew@synesis.com.au

