
Preface
Maybe I don’t love C++ the same way I love my kids, nor even as much as climbing 10% smooth
tarmac in 32° on the rivet,1 although at times it does come close. But I do count myself blessed that
I get to spend the parts of my life that are devoted to work in the practice of, to paraphrase Frederick
P. Brooks, “creation by exertion of my imagination.” I consider myself doubly blessed that I have at
my disposal the singularly powerful, dangerous, and spellbinding language that is C++.

That all sounds very hearts and flowers, but you may have picked up this book because the
title suggests that it will be a beat-up of C++. Indeed, you may be an aficionado of Java, or C, or
another of the popular major languages, and have seized on a copy of Imperfect C++ eager to
find evidence to justify why you’ve given C++ a wide berth. If that is you, you may be disap-
pointed, because this book is rather a critical celebration of C++. But stick around anyway; you
might find some reasons why you should start looking towards C++ instead.

What You Will Learn
I wrote this book to empower fellow developers. It takes a critical, but constructive, look at C++
and its imperfections, and presents practical measures for avoiding or ameliorating them. When
you’ve read it, I hope you’ll have a better grasp of:

• How to overcome several of the deficiencies in C++’s type system

• The usefulness of template programming in increasing code flexibility and robustness

• How to survive in the realm of undefined behavior—that which is not addressed by the
standard—including dynamic libraries, static objects, and threading

• The costs of implicit conversions, the troubles they bring, and the alternative of effective
and manageable generalized programming via explicit conversions

• How to write software that is, or may more easily be made, compatible with other compil-
ers, libraries, threading models, and the like

• What compilers do “behind the scenes” and how they may be influenced

• The tricky interoperability of arrays and pointers, and techniques by which they may be
dissuaded from behaving like each other

• The power of C++ to support the Resource Acquisition Is Initialization mechanism and the
variety of problem domains in which it can be applied

• How to minimize your effort by maximizing your compiler’s ability to detect errors

You will certainly be equipped to write code that is more efficient, more maintainable,
more robust, and more flexible.

It’s my intention that even very experienced C++ practitioners will find new ideas and
some new techniques with which to stimulate the mind and enhance their existing practice. Pro-
grammers with less experience will be able to appreciate the principles involved and to use the

xv

1The cyclists among you will know of what I speak.

fm01.qxd  8/26/04  3:19 PM  Page xv



techniques within their own work, moving to fill any gaps in their understanding of the details
of the techniques as their knowledge grows.

I don’t expect any of you to agree with everything that I have to say, but I do expect even the
most contentious material to stimulate your understanding of your use of this formidable language.

What I Assume You Know
Unless one wants to write a very large book, a good degree of knowledge must be assumed. It
would be churlish to stipulate that you have read a precise set of texts, but I do assume that you
have knowledge and experience sufficient to be comfortable with most of the concepts con-
tained in Scott Meyer’s Effective C++ and Herb Sutter’s Exceptional C++ series. I also assume
that you have a copy of the language bible: Bjarne Stroustrup’s The C++ Programming Lan-
guage. I don’t assume you’ve read Stroustrup cover to cover—I haven’t (yet)—but you should
use it as the ultimate reference for the language, as there’s a gem on every other page.

Imperfect C++ contains a fair amount of template code—which modern C++ book doesn’t?
—but I do not assume that you’re a guru2 or have advanced knowledge of meta-programming.
Nonetheless, it’s probably best if you’re at least familiar with using templates, such as those that
form the popular parts of the C++ standard library. I have tried to keep the template use down to
a reasonable level, but it has to be acknowledged that the support for templates is the very thing
that allows C++ to “self-repair,” and it is that, therefore, which largely accounts for the exis-
tence of this book.

Since flexibility and practicality are big things with me, this is not a book whose code can
only be used with a small minority of “bleeding edge” compilers; nearly everything in the book will
work with just about any reasonably modern compiler (see Appendix A). Certainly there are good
freely available compilers, and you can have confidence that your compiler will support the code.

Wherever possible, I’ve avoided reference to particular operating environments, libraries, and
technologies. However, I do touch on several, so it would be useful, though by no means essential,
to have some grounding in some of the following: COM and/or CORBA, dynamic libraries
(UNIX and/or Win32), STL, threads (POSIX and/or Win32), UNIX, and Win32. The bibliogra-
phy contains numerous references to good books on these and other subjects. It would also be use-
ful to have familiarity with more than one machine architecture, though again this is not essential.

Since C remains the lingua franca of interlanguage and operating system development, it
continues to be an extremely important language. Notwithstanding that this is a book about
C++, there are many areas in which the common heritage of C and C++ comes into focus, and I
make no apologies for addressing both languages in those circumstances. Indeed, as we see in
Part Two, we need to fall back on C to support several advanced uses of C++.

There’s one important assumption about you that I am making. I assume that you believe in
doing quality work, and are motivated to finding new ways in which you can achieve this. This
book cannot claim to be the sole source of such new ways of approaching C++. Rather it repre-
sents a practical, and in some cases heretical, look at the problems we all encounter with the
language, and can at best form a part of your library of essential texts. The ultimate responsibil-
ity is yours. All the rest is just getting the best tools to back you up.
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Organization
The main content of the book is divided into six parts. Each part is comprised of an introduc-
tion, followed by between five and seven chapters, each of which is further divided into relevant
sections.

Inspired by the title of the book, I try to highlight the actual imperfections, so you will find
them throughout the text. In the early parts of the book, the imperfections come thick and fast,
reflecting the relatively straightforward nature both of the imperfections themselves and of their
solutions. Each subsection refers to a particular feature of the language and generally describes
an imperfection. Wherever possible, a specific technique and/or software technology is pre-
sented which either answers the problem, or provides the developer with control over it. As the
book progresses, the imperfections become less discrete and more significant, with correspond-
ingly lengthy and detailed discussions.

The book does not follow the modern “buffet” format, nor does it have a single contiguous
thread requiring it to be read from front to back. Having said that, most of the later chapters are
described in terms of, and will occasionally be built on, the content of earlier ones so, unless
you’re feeling perverse, you’ll be better off reading it in order. However, once you’ve read it
once, you should be able to come back to any point for reference without needing to read the
whole thing again. Within the chapters, sections generally follow a sequential format, so I
would recommend that you read each chapter in that vein.

In terms of difficulty, it’s certainly the case that Parts One through Four follow a progres-
sion from reasonably straightforward to seriously demanding.3 Although Parts Five and Six rely
on some of the material from Parts Three and Four, they are considerably less challenging, and
you should feel yourself cruising along to the appendixes.

Following the main content of the book are four short appendixes. Appendix A details the
compilers and libraries used in the research for Imperfect C++. Appendix B regales you with
some of the slack-jawed blunders of a young C++ engineer, taking his first steps in the land of
the double crosses. Appendix C describes the Arturius project, a free, open-source compiler-
multiplexer, which is also included on the CD. Appendix D describes the contents of the CD-
ROM.

I have a very consistent, perhaps strict, coding style; you may well call it pedantic. Former
colleagues and users of my libraries have certainly done so. But I do it the way I do because
there are no unanswered questions as to where everything goes, which means I can come back
to it years later and dive straight in. The downside is that I need a twenty-one-inch monitor and
an industrial-strength laser printer.

In order to minimize the effects of my coding style on the readability of Imperfect C++,
I’ve taken a few liberties in the code examples presented throughout the book. You’ll see a lot
of ellipses (...) in the examples, and this generally means something that’s either been cov-
ered in a previous related example, or reflects boilerplate code that we all use (e.g., the proscrip-
tion of methods from client code access—see section 2.2). Only the aspects of style that have
manifest effects on reliability are discussed, in Chapter 17.4
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3Parts of Parts Three and Four hurt my brain still.
4If you absolutely must sample the voluminous splendor of the rest of my coding style, there’s plenty of exemplifying
code in the libraries provided on the CD. 
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References
One of the things that irritates me when reading C++ books is when the author stipulates a fact
but does not make reference to the relevant section of the standard. So in addition to including
references to relevant articles and books, wherever I make a statement as to the behavior of the
language I have attempted to provide references in the C (C99) or C++ (C++98) standards.

Supplementary Material
CD-ROM

The accompanying CD-ROM contains libraries, compilers (including many of the code
techniques described in the book), test programs, tools, and other useful software, as well as a
number of relevant articles from various publications. See Appendix D for more details on its
contents.

Online Resources

Supplementary material will also be available online at http://imperfectcplusplus.com.5
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