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CHAPTER 314

Functors and Ranges

34.1 Syntactic Clutter

Many of the standard library algorithms operate on ranges, where a range is defined as a pair of
iterators [Aust1999]. This abstraction is very powerful, and has been exploited to the degree
that much of the STL, and, therefore, much of modern C++, relies upon it.

An example of this might be in a simple program to read in integers into a vector:

std::fstream f("integers.dat", std::ios::in | std::ios::out);

std::copy( std::istream_ iterator<int>(f)
, std::istream_iterator<int>()

, std::back_inserter(v2));

In this case, the second argument is a default-constructed iterator that acts as an indicator
for the end of range. The two iterators are not connected in a physical sense; the implementation
of istream_iterator is such that a default-constructed instance may be interpreted as the
logic end point of the range.

Many times we use algorithms over a range of values acquired from a container or contain-
erlike, object as in:

struct dump_string

{

void operator () (std::string const &) const;
};
std: :vector<std: :string> > strings = . . .;
std: :for_each(strings.begin(), strings.end(), dump_string());

As such, it can become tedious, since we replicate the same calls to begin () and end ()
time and time again. This is miles away from being an imperfection—barely even a minor
gripe—but there are circumstances in which it can be a pain. Consider the case when using
(pseudo)containers such as glob_sequence (see section 20.6.3) that are only created in
order to elicit their range.' Let’s imagine we want to determine how many Imperfect C++

'Note that I'm kind of creating my own problem to solve in this specific case, because I tend to extend STL in this way.
It is possible in many cases to follow the example of istream_iterator and encapsulate the start of the enumera-
tion in the constructor of the nondefault iterator; Boost’s file-system enumeration component works in this way. But this
is a logical disconnect that troubles me too much to follow the lead—you may well see it differently.
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header files are larger than 1024 bytes, because we want to really immerse ourselves in the

magic:

struct is_large

: public std::unary_function<char const *, bool>

bool operator () (char const *file) const
{
// Return true if "file" > 1024 bytes
}
Y

glob_sequence gs("/usr/include/", "impcpp*");

size_t n = std::count_if(gs.begin(), gs.end(), is_large());

gs is not needed for any other purpose, and its presence otherwise serves only to pollute the

local namespace.

An analogous situation occurs when we want to enumerate two or more ranges in the same
scope. We can end up introducing several variables for the different begin and end conditions of
each range into the current scope, as we saw in section 17.3.2, or using the double-scoping trick

from section 17.3.1.

34.2 for_all() ?

Given the common enumeration of full ranges, it is a simple matter to create full-range
equivalents of the standard algorithms. We might create a container-compatible version of

std: :for_each (), whichwe’ll call for_all () for the moment:

template< typename C

, typename F

>
inline F for_all(C &c, F f)
{

return std::for_each(c.begin(), c.end(), f);

This is a reasonable implementation for the general case of such an algorithm since most

containers—standard and otherwise—provide begin () and end () methods.

As well as reducing the tedium of specifying the two iterator method calls, it can also fur-
ther reduce the eyestrain when dealing with (pseudo)containers. Our glob_seqguence can be

declared as an anonymous temporary, giving us the pleasingly condensed:

n = std::count_if( glob_sequence("/usr/include/", "impcpp*")

, is_large());
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When you’re dealing with production code, such savings of syntactic clutter can be a real
boost in readability.

Some critics may counter that the considerable amount of code involved in that single state-
ment is another example of how C++ has strayed from the Spirit of C [Como-SOC]; it’s
certainly hard to argue “nothing is hidden.” I would concede this point, but only as far as the
functor is concerned. I think arguing that the “hidden” nature of the range access and enumera-
tion is wrong is a specious argument; one may as well argue that we should all eschew the use
of library functions and write everything in assembler. The STL [ferator concept [Aust1999,
Muss2001] is designed to facilitate maximum efficiency of enumeration—usually the only way
to “misuse” sequences is to use higher level Iterator concept [Aust1999, Muss2001] behavior,
but for_each () requires only input iterators.

34.2.1 arrays

As we saw in Chapter 14, the fact that we’ve got two places of definition of the array size is
a potential source of errors. Even when they both use the same constant, there are still, in effect,
two definitions.

int ari[10] = { . . . };

std: :for_each(&ari[0], &ari[10], print_int);

We also saw that the foolproof way to deal with arrays is to use static array size determina-
tion in the form of dimensionof () or a similar construct.

std: :for_each(&ari[0], &ari[dimensionof(ari)], print_int);

However, given our definitions of for_all (), we can easily specialize for arrays using
the similar facilities, as in:

template< typename T
, size_t N
, typename F
>
inline F for_all(T (&ar)[N], F f)
{
return std::for_each(&ar[0], &ar[N], f);

34.2.2 Naming Concerns

Let’s now turn to the issue of the naming of such algorithms. I deliberately chose an unsuit-
able name, so that we wouldn’t get comfy with it. The problem with the name for_all ()
is all too obvious: it doesn’t transfer to other algorithms. Do we have a £ill_all (),
accumulate_all (), and so on? It’s not an attractive option. Ideally we’d like to call it
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for_each (), so why not do that? Unfortunately, this is a bit of a conundrum: we must select
from equally unpleasant options.

We are only allowed to specialize templates that already exist in the standard namespace
for new types; we are not allowed to add any new template (or nontemplate) functions or types.
I would say that the array form of for_all (), were we to call it for_each (), could not be
reasonably classed as a specialization based on new types, although I confess the issue’s hardly
equivocal.

The alternative is to define it as for_each () within our own namespace. In that case, we
must remember to “use” it, via a using declaration, whenever we want to use it outside our name-
space. Unfortunately, we’ll also have to remember to “use” std::for_each () whenever
that’s what’s required, since any using declaration for our for_each () will mask out the std
one. Failure to do this can lead to some very perplexing error messages. But despite this, the prob-
lems raised for writing generalized code when the algorithms are of different names are such that,
in general, this approach should be seriously considered? despite the namespace “use” hassles.

We’ll look at just one example of the namespace problems. Consider that you are using
your own library components en masse via a using directive, using namespace acmelib.
That’s okay, you reason, because in this client code you’ll be using heaps of things from the
acmelib namespace. One of these is your array version of for_each(). You go along
swimmingly with this for a while, and then need to use std: : for_each () in some part of
the implementation file, so you “use” that one function via a using declaration:

using namespace acmelib; // Using directive

using std::for_each; // Using declaration
int aif[l0];
for_each(ai, print_int);

Now your code will not compile, because the specific introduction of std::
for_each () via the using declaration takes precedence over the one “used” via the general
introduction of the using directive. What’s to be done: introduce std: : for_each () viaa
using directive? What happens if there’re conflicting definitions in the two namespaces of a
given function or type that is being used in our code?

What we’re forced to do is make an additional using declaration for acmelib: :
for_each (). Given that, why not simply use using declarations in the first place? It may be a
little bit more work initially, but it’s a big saving in the long run, and we all know that the cost
of the initial coding phase of software is pretty irrelevant in comparison to its maintenance
[Glas2003]. This is just one of the reasons why I refuse to use using directives under just about
any circumstances.’

’This is the approach taken by John in his Boost-compatible implementation of RangeLib, although he relies more on
the explicit qualification of the RangeLib algorithm namespace boost: :rtl: :rng: : for_each.

3Much hard-won experience with Java’s import x.* also contributes to my loathing for the indiscriminate introduc-
tion of names into namespaces. Herb Sutter and I have an ongoing difference of opinion on this point. Fortunately for
Herb, he is vastly more knowledgeable and erudite on C++ than I am. Fortunately, for me, this is my book and I can
write what I like.
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In this case, our new for_each () and std: : for_each () have different numbers of
arguments, so we could not be writing generalized code that could work with both anyway.
Hence, we could just call the algorithms for_each_c (), £111_c (), and so on.

We’ll come back to the naming problem toward the end of this chapter.

34.3 Local Functors

So far our concerns have been largely syntactic. But there’s a second, and more significant,
troubling aspect of using STL algorithms, which represent a more serious imperfection. When
you have a suitable function or functor available, then you can get code that is very succinct, as
well as being powerful:

std::for_each(c.begin(), c.end(), fn());

However, as soon as you need to do something more sophisticated or specific to the ele-
ments in a range, you have two choices, neither of which is particularly attractive. Either you
unroll the loop and provide the functionality yourself, or you wrap up that functionality in a cus-
tom function or functor.

34.3.1 Unrolled Loops

The normal option is to unroll the algorithm and do it longhand, as in the following code
from an early version of the Arturius compiler multiplexer (see Appendix C):

Listing 34.1
void CoalesceOptions(. . .)

{

{ OptsUsed_map_t::const_iterator b = usedOptions.begin() ;
OptsUsed_map_t::const_iterator e = usedOptions.end();
for(; b != e; ++b)
{
OptsUsed_map_t::value_type const &v = *Db;
if( !v.second &&
v.first->bUseByDefault)

arcc_option option;

option.name = v.first->fullName;
option.value = v.first->defaultvValue;
option.bCompilerOption = v.first->type == compiler;

arguments.push_back (option) ;

1}

Naturally, such things can get quite verbose; I could have grabbed another from the same
file that was considerably longer.
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34.3.2 Custom Functors

The alternative to unrolling loops is to write custom functors to provide the behavior you
need. If the behavior is something that can be used in a variety of places that’s great, but often-
times you’re writing a new class for just one, or a small number of cases.

Because it’s a separate class, it will be physically separate from where it is being used,
leading to the code being hard to comprehend and maintain. The best way you can handle this is
to define the functor class in the compilation unit as the code that’s going to be using it, prefer-
ably just before the function where it is used.

Listing 34.2
struct argument_saver
{
public:
argument_saver (ArgumentsList &args)
: m_args (args)
{3
void operator () (OptsUsed map_t::value_type const &o) const
{
if( !o.second &&
o.first->bUseByDefault)

arcc_option option;
m_args.push_back (option) ;

}
private:

ArgumentsList &m_args;
}i

void CoalesceOptions(. . .)

{

std::for_each( usedOptions.begin(), usedOptions.end()

, argument_saver (arguments)) ;

But the domain specific code encapsulated within the functor is physically separate from
the only place(s) where it is used, and meaningful, and this is not ideal. The separation reduces
maintainability and, worse, encourages overeager engineers to try and reuse it or to refactor it.

34.3.3 Nested Functors

One thing that could be done to improve the problem of separation of specific functors from
their point of its use might be to allow them to be defined within the function in which they’re
used. For example, we might want argument_saver to be defined within £n (), as in:
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void CoalesceOptions(. . .)

{

struct argument_saver

{

};
std: :for_each( usedOptions.begin(), usedOptions.end()

, argument_saver (arguments) ) ;

Alas, local functor classes are not legal in C++. This is because a template argument must
refer to an entity with external linkage (C++-98: 14.3.2).*

Imperfection: C++ does not support local functor classes (to be used with template
algorithms).

Notwithstanding the illegality, some compilers do allow them: CodeWarrior, Digital Mars,
and Watcom. Furthermore, Borland and Visual C++ can be tricked into supporting it by the
simple rouse of encapsulating the next class within another nested class, as in

Listing 34.3
void CoalesceOptions(. . .)

{

struct X
{
struct argument_saver

{

}i
}i

std::for_each( usedOptions.begin(), usedOptions.end/()

, X::argument_saver (arguments)) ;

Table 34.1 summarizes the support for both forms for several popular compilers. Comeau,
GCC, and Intel do not supported nested functions in either guise.’

If you’re using only one or more of Borland, CodeWarrior, Digital Mars, Visual C++, and
Watcom, then you might choose this approach. But it’s not legal, and your portability will be
compromised if you do so.

“This applies to all templates, not just template algorithms and functors.
3If those three tell you your code is wrong, the odds are good that you’re doing something wrong.
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Table 34.1

Compiler Local class Nested local class
Borland No Yes
CodeWarrior Yes Yes
Comeau No No

Digital Mars Yes Yes

GCC No No

Intel No No

Visual C++ No Yes
Watcom Yes Yes

34.3.4 Legally Bland

The only legal way I know of to make such things work is turgid beyond bearing. Since the
template’s parameterizing type must be an external type, we define the function type outside the
function. Given that we want to specialize the behavior in a local class, we must relate the inter-
nal and external classes. Since we cannot use templates, we can fall back on the old C++ work-
horse: polymorphism. The local class argument_saver inherits from the external class
argument_processor, and overrides its operator () () const, asin:

Listing 34.4
struct argument_processor
{
public:
virtual void operator () (OptsUsed_map_t::value_type const &o) const = 0

void CoalesceOptions(. . .)

{

struct argument_saver

: argument_processor

virtual void

operator () (OptsUsed_map_t::value_type const &o) const

That doesn’t seem so bad, I suppose. However, to use it in a template algorithm requires
that the parameterization be done in terms of the external (parent) class. And since the parent is
an abstract class, the functor must be passed as a (const) reference, rather than by value.

e



ch34.gxd 8/26/04 8:46 AM Page 516 CE

516 Chapter 34 * Functors and Ranges

Further, std: : for_each () takes the functor type as the second template parameter, so
it is necessary to explicitly stipulate the iterator type as well. Thus, using the “convenient”
for_each () isn’t very succinct, or general, and it certainly isn’t pretty:

for_each< OptsUsed_map_t::const_iterator
, argument_processor const &>( &ari[0], &ari[10]

, argument_saver()) ;

You’d have to agree that manual enumeration would be preferable. There’s one last gasp at
making this prettier, which is to define a for_each () equivalent that takes the template para-
meters in the reverse order so that the function type can be deduced implicitly:

template< typename F

, typename I

>
inline F for_each_1(I first, I last, F fn)
{

return std::for_each<I, F>(first, last, fn);

which brings us to the final barely chewable form:

for_each_l<argument_processor const &>( &ari[0], &ari[10]

, argument_saver()) ;

But for my money this is still nowhere near good enough. Imagine the poor maintenance
programmer trying to follow this stuff®

34.3.5 Generalized Functors: Type Tunnelling

If we can’t make functors more local, maybe we can improve the situation by making them
more general? Let’s look at an example where we can expand the generality of the is_large
functor (see section 34.1). We can use this with a sequence whose value_type is, or may be
implicitly converted to, char const*, such as glob_sequence. Unfortunately, it can only
be used with such types. If we want to use the same function with a type that uses Unicode en-
coding and the wchar_t type, it won’t work.

One answer to this is to make is_large a template, parameterizable via its character
type, as in:

template <typename C>
: public std::unary_function<C const *, bool>
struct is_large

{

There were a few weeks between starting this chapter and doing the final version. In that short time I forgot how this
worked, and I wrote it!
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bool operator () (C const *file) const;
Y

Now this will work with sequences using either char or wchar_t (using the fictional
Unicode globw_sequence), so long as we stipulate the appropriate instantiation:

glob_sequence gs("/usr/include/", "impcpp*");

n = std::count_if (gs.begin(), gs.end(), is_large<char>());

globw_sequence gsw(L"/usr/include/", L"impcpp*");

n = std::count_if (gsw.begin(), gsw.end(), is_large<wchar_t>());

That’s a lot more useful, but it’s still not the full picture. Looking back to section 20.6.3,
we also looked at another file system enumeration sequence readdir_sequence, whose
value_type—struct dirent const*—is notimplicitly convertible to char const*.
The solution for the problem in that section was to use Access Shims (see section 20.6.1), and
we can apply them here to the same end. However, it’s a little more complex now, because
we’ve got templates involved, as shown in Listing 34.5.

Listing 34.5

template< typename C
, typename A = C const *
>

struct is_large

: public std::unary_function<A, bool>

template <typename S>

bool operator () (S const &file) const
{
return is_large_ (c_str_ptr(file)); // apply c_str_ptr shim
}
private:

static bool is_large_(C const *file)
{

// determines whether large or not

The function-call operator—operator () () const—is now a template member func-
tion, which attempts to convert whatever type is applied to it via the c_str_ptr () shimto C
const*, which is then passed to the static implementation method is_large_ (). Now

we can use the functor with any type for which a suitable c_str_ptr () definition exists and
is visible, hence:

readdir_sequence rs("/usr/include/");

n = std::count_if(rs.begin(), rs.end(), is_large<char>());
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I call this mechanism Type Tunneling.

Definition: Type Tunneling is a mechanism whereby two logically related but physically
unrelated types can be made to interoperate via the use of Access Shims. The shim al-
lows an external type to be tunneled through an interface and presented to the internal
type in a recognized and compatible form.

I’ve used this mechanism to great effect throughout my work over the last few years. As
well as facilitating the decoupled interoperation of a large spectrum of physically unrelated
types via C-string forms, there is also the generalized manipulation of handles, pointers, and
even synchronization objects. Type tunneling (and shims in general) goes to town on the princi-
pal of making the compiler one’s batman. We saw another example of type tunneling in section
21.2, whereby virtually any COM-compatible type can be tunneled into the logging API
through the combination of generic template constructors and InitialiseVariant ()
overloads, which combine to act as an access shim.

34.3.6 A Step too Far, Followed by a Sure Step Beyond

You may be wondering whether we can take this one further step, and remove the need to
stipulate the character type. The answer is that we can, and with ease, as shown in Listing 34.6.

Listing 34.6
struct is_large

: public std::unary_function<. . ., bool>

template <typename S>
bool operator () (S const &file) const
{
return is_large_ (c_str_ptr(file));
}
private:
static bool is_large_ (char const *file);
static bool is_large_ (wchar_t const *file);

Y

It is now simpler to use, as in:

= std::count_if(rs.begin(), rs.end(), is_large());
= std::count_if(gs.begin(), gs.end(), is_large());
= std::count_if (gsw.begin(), gsw.end(), is_large());

However, there’s a good reasons why we don’t do this. This functor is a predicate—a func-
tor whose function-call operator returns a Boolean result reflecting some aspect of its argu-
ment(s). One important aspect of predicates is that they may be combined with adaptors
[Muss2001], as in the following statement that counts the number of small files:

n = std::count_if( gs.begin(), gs.end()

, std::notl(is_large<char>()));
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In order for adaptors to work with predicates, they must be able to elicit the member types
argument_type and result_type from the predicate class. This is normally done by de-
riving from std: :unary_operator. Now we can see why the final refinement shown in
Listing 34.6 cannot be done. There’s no way to specify the argument type, other than to define
the predicate class as a template with a single template parameter to define the predicate. But
this would have to be provided in every use as there’s no sensible default, which would be oner-
ous to use and confusing to read.

This is why the actual functor definition is a two-parameter template, where the first para-
meter C represents the character type and the second parameter A, which defaults to C
const*, represents the argument_ type of the predicate.

template< typename C
, typename A = C const *
>

struct is_large

: public std::unary_function<A, bool>

Now when we want to use this with an adaptor and a sequence whose value_type is not
C const*, we do something like the following:

n = std::count_if( rs.begin(), rs.end() // rs: readdir_sequence

, std::notl(is_large<char, struct dirent const*>()));

It doesn’t have beauty that will stop a man’s heart, but it’s bearable considering the fact that
the combination of sequence and adaptor that necessitates it is low incidence, and the advan-
tages of the generality and consequent reuse are high. It also facilitates a high degree of general-
ity, since we can write a template algorithm that would be perfectly compatible with any
sequence, and maintain the type tunneling, as in:

template< typename C // character type
, typename S // sequence type

>
void do_stuff(. . .)
{

S s = .. .;

size_t n = std::count_if( s.begin(), s.end()

, std::notl(is_large<C, typename S::value_type>()));

Okay, before you think I’ve gone completely cracked, I confess that this is hardly some-
thing that gambols into the brain through the merest wisp of rapidly clearing mental fog. It’s
something that you definitely have to think about. But there are times when we simply have to
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have complex bits of code; check out some of your friendly neighborhood open-source C++ li-
braries if you don’t believe me.

The point is that we have a mechanism for writing highly generalized—reusable, in other
words—components, which are very digestible—in that they follow accepted idiomatic
forms—in most cases where they are used. This generality is bought for the acceptable, in my
opinion, cost of requiring the specification of the given sequence’s value_type when used
with adaptors.

34.3.7 Local Functors and Callback APIs

Just because local functors are not allowed for STL algorithms does not mean that they
cannot find use in enumeration. In fact, when dealing with callback enumeration APIs, local
classes are eminently solutions. Consider the implementation of the function FindChild
ById() (see Listing 34.7), which provides a deep-descendent equivalent to the well-known
Win32 function GetDlgItem(). GetDlgItem() returns a handle to an immediate child
window bearing the given id. FindChi1dById () provides the same functionality, but is able
to locate the id in any descendent windows, not just immediate children.

Listing 34.7
HWND FindChildById (HWND hwndParent, int id)
{
if (::GetDlgCtrlID (hwndParent) == id)
{
return hwndParent; // Searching for self
}
else
{
struct ChildFind
{
ChildFind (HWND hwndParent, int id)
: m_hwndChild (NULL)
, m_id(id)

// Enumerate, passing "this" as identity structure

: :EnumChildwindows ( hwndParent,
FindProc,
reinterpret_cast<LPARAM> (this)) ;

static BOOL CALLBACK FindProc (HWND hwnd, LPARAM lParam)

{
ChildFind &find = *reinterpret_cast<ChildFind*> (1lParam) ;

return (::GetDlgCtrlID(hwnd) == find.m_id)
? (find.m_hwndChild = hwnd, FALSE)
: TRUE;
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HWND m_hwndChild;

int const m_id;
} find (hwndParent, id);

return find.m_hwndChild;

The class ChildFind is declared within the function, maximizing encapsulation. The in-
stance £ind is passed the parent window handle and the id to find. The constructor records the
id in the m_1d member, and sets the search result member m_hwndChild to NULL. It then
calls the Win32 callback enumeration function EnumChildwindows (), which takes the par-
ent window handle, a callback function, and a caller-supplied parameter. The instance passes
the static method FindProc () and itself as the parameter. FindProc () then responds to
each callback by determining whether the desired id has been located, and, if so, it records the
handle and terminates the search.

When the construction of £ind is complete, it will either contain the requested handle, or
NULL, in the m_hwndChild member. In either case this is returned to the caller of Find-
ChildById (). The entire enumeration has been carried out in the constructor of the local
class, whose definition is not accessible to any outside context. FindChildById () perfectly
encapsulates the Chi1dFind class.

34.4 Ranges

We’ve seen that there are two issues in the enumeration of ranges and the use of functors. First,
we have a desire to avoid the general, though not universal, repeated stipulation of the
begin() and end () methods for sequence types. Second, we have a need to avoid writing
overly specific “write-once, use nowhere else” functors.

In a discussion with my friend John Torjo,” we discovered that we’ve had similar disen-
chantments with these issues, and wanted a better solution. We came up with the Range
concept. Naturally, he and I see the issue slightly differently;® the concept definition and com-
ponent implementations presented here primarily reflect my view.

34.41 The Range Concept

The range concept is quite simple.

Definition: A Range represents a bounded collection of elements, which may be ac-
cessed in an incremental fashion. It encapsulates a logical range—that is, a beginning
and end point, along with rules for how to walk through it (move from the beginning to

"John was also a one of the reviewers for this book.

8You can fit more angels on the head of a pin than you can find software engineers who wouldn’t argue over a blade of
grass. Notwithstanding that, John and I are in a reasonable state of agreement. You can see the differences in our inter-
pretation of the concept, and understand the different design principles and implementation mechanisms in our imple-
mentations, because John’s expansive and impressive Boost-compatible implementation of the Range concept is
included on the CD along with my own STLSoft version.
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the end point)}—and embodies a single entity with which client code may access the val-
ues contained within the range.

Sounds almost too simple to be meaningful, doesn’t it? Well, the salient part of the defini-
tion is that it’s a single entity. The canonical form of use is:

for(Rr = . . .; r; ++r)
{
f(*r);

or, if you don’t go for all that operator overloading:

for(Rr = . . .; r.is_open(); r.advance())
{

f(r.current());

There’s noticeable brevity of form, which is part the raison d’étre of ranges. A range has
the characteristics shown in Table 34.2.
Let’s look at a couple of ranges in action:

// A range over a sequence
glob_sequence gs("/usr/include/", "impcpp*");
for (sequence_range<glob_sequence> r(gs); r; ++r)
{
puts(*r); // Print the matched file entry to stdout

// A "notional range"

for (integral_range<int> r (10, 20, 2); r; ++r)

Table 34.2 Characteristics of a notional range.

Name Expressions Semantics Precondition Postcondition
Dereference *r Returns the value r has not reached r is unchanged
or of represented at its end condition
r.current () the current position
Advance ++r Advances r’s r has not reached r is dereference-
or current position its end condition able or has
r.advance () reached its end
condition
State r Evaluates to true r is unchanged
or if r has reached
r.is_open/() its end condition, -

false otherwise

e



ch34 . gxd

8/26/04 8:47 AM Page 523 CE

34.4 Ranges 523
cout << *r << endl; // Print int value at current point

There’s no way any pointer can fit the range syntax’ so we don’t have to worry about cater-
ing for any fundamental types; this provides us with a lot of extra flexibility in the implementa-
tion. In other words, we can rely on all range instances being of class types, and therefore we
can rely on the presence or absence of class type characteristics in order to specialize behavior
for the algorithms that operate on ranges (see section 34.4.4).

The way this works is similar to the implementation of algorithms that manipulate Iterators
[Aust1999], only simpler. My implementation of ranges simply relies on the specific range
types deriving from the appropriate range type tag structure:

struct simple_range_tag
{}:

struct iterable_range_tag
: public simple_range_tag
{}:

We’ll see how these are used in the next sections.

34.4.2 Notional Range

Sometimes you don’t have a concrete range, that is, one defined by two iterators; rather you
have a notional range. It might be the odd numbers between 1 and 99. In this simple case you
know that the number of odd numbers is 49 (1-97 inclusive), and so what you might do in clas-
sic STL is as shown in Listing 34.8:

Listing 34.8
struct next_odd_number
{
next_odd_number (int first)
: m_current (first - 2)
{}
int operator () ()
{
return ++++m_current; // Nasty, but it fits on one line ;/
}
private:
int m_current;

}i

std::vector<int> ints(49);

std::generate (ints.begin(), ints.end(), next_odd_number (1)) ;

°Except if we were to point it high into the top of memory and then iterate until it reached 0, but this would result in an
access violation on many platforms, so the issue is moot.
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Books on STL tend to show such things as perfectly reasonable examples of STL best prac-
tice. That may indeed be the case, but to me it’s a whole lot of pain. First, we have the creation
of a functor that will probably not be used elsewhere.

Second, and more significantly, the technique works by treating the functor as a passive
producer whose actions are directed by the standard library algorithm generate (), whose
bounds are, in turn, defined by the vector. This is very important, because it means that we need
to know the number of results that will be created beforehand, in order to create spaces for them
in the vector. Hence, we need a deep appreciation of how the producer—the functor—works. In
this simple case, that is relatively straightforward—although I must confess I did get it wrong
when preparing the test program! But imagine if we were computing the members of the
Fibonacci series up to a user-supplied maximum value. It would be impossible to anticipate the
number of steps in such a range other than by enumerating it to completion, which would be a
drag, not to mention inefficient.

What we want in such cases is for the producer to drive the process, in accordance with the
criteria stipulated by the code’s author. Time to crank out my favorite example range, the
integral_range template, whose simplified definition is shown in Listing 34.9:

Listing 34.9
template <typename T>
class integral_range
: public simple_range_tag
{
public:
typedef simple_range_tag range_tag_type;
typedef T value_type;
// Construction
public:
integral_range( value_type first, value_type last
, value_type increment = +1)
~integral_range()
{
// Ensure that the parameterising type is integral
STATIC_ASSERT(0 != is_integral_type<T>::value);
}
// Enumeration
public:
operator “safe bool” () const; // See Chapter 24
value_type operator *() const;
class_type &operator ++();
// Members

}i

The integral_range performs enumeration over its logical range via member vari-
ables of the given integral type, T.

e
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We can now rewrite the instantiation of the vector with odd numbers as follows:

std::vector<int> ints;
ints.reserve(49); // No problem if this is wrong.

r_copy (integral_range<int>(1, 99, 2), std::back_inserter(ints));

Note that the call to reserve () is an optimization and can be omitted without causing
any change to the correctness of the code. r_copy () is a range algorithm (see section 34.4.3)
that has the same semantics as the standard library algorithm copy () [Muss2001]. Now the
producer, the instance of integral_range<int>, drives the process, which is as it should
be. We could easily substitute a Fibonacci_range here, and the code would work correctly
and efficiently, which cannot be said for the STL version.

34.4.3 lterable Range

The Iterable range is an extension of the Notional range, with the additional provision of
begin(), end() and range () methods, allowing it to be fully compatible with standard
STL algorithms and usage (see section 34.4.4).

Iterable ranges usually maintain internal iterators reflecting the current and past-the-end
condition positions, and return these via the begin () and end () methods. The range ()
method is provided to allow a given range to be cloned in its current enumeration state, al-
though this is subject to the restrictions on copying iterators if the range’s underlying iterators
are of the Input or Output Iterator concepts [Aust1999, Muss2001]: only the Forward and
“higher” models [Aust1999, Muss2001] support the ability to pass through a given range more
than once.

It is possible to write iterable range classes, but the common idiom is to use an adaptor. In
my implementation of the Range concept, I have two adaptors, the sequence_range and
iterator_range template classes. Obviously the sequence_range adapts STL
Sequences, and the iterator_range adapts STL [ferators.

Given a sequence type, we can adapt it to a range by passing the sequence instance to the
constructor of an appropriate instantiation of sequence_range, as in:

std::deque<std::string> d = . . . ;
sequence_range< std::deque<std::string> > r(d);
for(; r; ++r)
{
// Use *r
Similarly, an iterator_range is constructed from a pair of iterators, as in:

vector<int> v = . . . ;

for (iterator_range<vector<int>::iterator> r(v.begin(), v.end());

e
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r; ++r)

// Use *r

Iterable ranges at first glance appear to be nothing more than a syntactic convenience for
reducing the clutter of unwanted variables when processing iterator ranges in unrolled loops. I
must confess that this in itself represents a big attraction to draw for me, but the concept offers
much more as we’ll see in the next couple of sections.

34.4.4 Range Algorithms and Tags

All the examples so far have shown ranges used in unrolled loops. Ranges may also be used
with algorithms. That’s where the separation of Notional and Iterable range concepts comes in.
Consider the standard library algorithm distance ().

template <typename I>

size_t distance(I first, I last);

This algorithm returns the number of elements represented by the range [first,
last). For all iterator types other than Random Access [Aust1999, Muss2001], the number is
calculated by iterating first until it equals last. But the template is implemented to simply
and efficiently calculate (last - first) for random access iterators. We certainly don’t
want to lose such efficiency gains when using algorithms with ranges.

The answer is very simple: we implement the range algorithms in terms of the standard li-
brary algorithms where possible. The range algorithm r_distance () is defined as shown in
Listing 34.10:

Listing 34.10
template <typename R>
ptrdiff_t r_distance_1(R r, iterable_range_tag const &)
{
return std::distance(r.begin(), r.end());
}
template <typename R>
ptrdiff_t r_distance_1(R r, simple_range_tag const &)
{
ptrdiff_t d = 0;
for(; r; ++r, ++d)
{}
return d;
}
template <typename R>
inline ptrdiff_t r_distance(R r)
{

return r_distance_1(r, r);
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r_distance () is implemented in terms of r_distance_1 () ,' which has two defini-
tions: one for the iterable ranges that defers to a standard library algorithm, and one for notional
ranges that carries out the enumeration manually. The two overloads of r_distance_1 ()
are distinguished by their second parameter, which discriminate on whether the ranges as sim-
ple or iterable.

We use run time polymorphism (inheritance) to select the compile-time polymorphism
(template type resolution), so we need to pass the range to r_distance_1 () in two parame-
ters, to preserve the actual type in the first parameter while at the same type discriminating the
overload in the second. Since compilers can make mincemeat of such simple things, there’re no
concerns regarding inefficiency, and the mechanism ably suffices. We saw in section 34.4.2 that
the integral_range template inherited from simple_range_tag. Iterable ranges in-
herit from iterable_range_tag. Hence the implementations of all range algorithms un-
ambiguously select the most suitable implementation.

We can now come back and address the algorithm name problem (see section 34.2.2).
Since we’re clearly distinguishing between iterator-pair ranges and instances of a range class,
we’re never going to need the same name to facilitate generalized programming because the
former ranges come as two parameters and the latter as one. Therefore, we can avoid all the
namespace tribulations and just use algorithms with an r__ prefix.

34.4.5 Filters

Another powerful aspect of the Range concept abstraction is that of filters. This aspect of
ranges is only just developing, but is already promising great benefits. I’1l illustrate with a sim-
ple filter divisible, which we’ll apply to our integral_range.

Listing 34.11
template <typename R>
struct divisible
: public R::range_tag_type
{
public:
typedef R filtered_range_type;
typedef typename R::value_type value_type;
public:
divisible(filtered_range_type r, value_type div)
: m_r(r)

, m_div(div)

assert(div > 0);
for(; m_r && 0 != (*m_r % m_div); ++m_r)

3

!0This is a general implementation naming policy, which helps to avoid clashes that can occur when the “outer” function
and the implementing “inner” functions have the same name, and there are multiple overloads of the “outer” function.
Different compilers have different aptitudes for resolving such things, so the simplest solution is to avoid it, and name
the implementing “inner” functions unambiguously.
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public:
operator "safe bool" () const; // See Chapter 24

{

// implemented in terms of m_r's op safe bool

}

value_type operator *() const
{

return *m_r;
}

class_type &operator ++()
{
for(; m_r && 0 != (*++m_r % m_div); )
{}
return *this;
}
private:
filtered_range_type m_r;
value_type m_div;
Yi

When combined with integral_range, we can filter out all the odd numbers in a given
range to only those that are wholly divisible by three, as in:

std: :vector<int> ints;
integral_range<int> ir (1, 99, 2);
r_copy( divisible<integral_range<int> >(ir, 3)

std: :back_inserter (ints));

Naturally range filters can be a lot more sophisticated than this in the real world.

34.4.6 Hypocrisy?

As someone who is against the abuse of operator overloading,'' I am certainly open to ac-
cusations of hypocrisy when it comes to the operators that ranges support. Clearly it can be ar-
gued, if one wished to be terribly uncharitable, that the unrealistic combination of operators
provided by ranges is an abuse.

I can’t really defend the concept in any purist sense, so I can fall back on the Imperfect
Practitioner’s Philosophy, and state that the fact that it works so well, and so simply, is worth
the pricked conscience.

If you like the range concept, but don’t want to go for the operator overloading, it is a sim-
ple matter to replace some or all of the operators with methods. The semantics and efficiency
will be the same; only the syntax will be slightly heavier.

for(Rr = . . .; r.is_open(); r.advance())

{

! Although you’ll have noted that I managed to overcome my squeamishness in Chapter 25.

e
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. = r.current();

34.5 Functors and Ranges: Coda

This chapter has been taking a somewhat meandering tour of what is at best a mild, often unno-
ticed, gripe with having to make too many keystrokes, but at worst can be a serious detriment to
maintainability.

We’ve looked at the trade-offs between unrolled loops and functors, and some of the im-
perfections in the language in terms of the difficulties of using local functors.

We’ve also seen how we can maximize the generality of functors, by making them compat-
ible with a wider variety of types, via character type parameterizations, type tunneling, and
adaptor argument type parameterization. The combination of these techniques represents a sub-
stantial resolution of the issues raised in the early part of the chapter.

Last, we looked at the Range concept. Not only do ranges provide a nice syntactic conve-
nience, but they also facilitate the unified manipulation of iterator-bound ranges and what we
might call purely logical ranges. Furthermore, the application of range filters, to both kinds of
ranges, represents a powerful but simple-to-use mechanism for criteria-driven manipulation of
ranges.

Update: The latest work on Ranges has incorporated callback enumeration APIs (in the
form of the Indirect Range)—something that cannot be handled by STL iterators. See
http://www.rangelib.org/ for the latest details.



