CHAPTER 10

Threading

The subject of multithreading is a pretty big one, and worthy of several books all to itself
[Bute1997, Rich1997]. In an attempt to simplify, I intend to stipulate that the challenges of mul-
tithreaded programming all pertain to synchronization of access to resources. The resources
may be a single variable, a class, or they may even be some product of one thread that is to be
consumed by another. The point is that if two or more threads need to access the same resource
their access needs to be made safe. Alas, both C and C++ were developed before multithreading
became as popular as it now is. Hence:

Imperfection: C and C++ say nothing about threading.

What does that mean? Well, in no part of the standard will you find any reference to thread-
ing." Does this mean that you cannot write multithreaded programs with C++? Certainly not.
But it does mean that C++ provides no support for multithreaded programming. The practical
consequences of this are considerable.

The two classic concepts [Bute1997, Rich1997] one must be wary of when writing multi-
tasking systems are race-conditions and deadlocks. Race-conditions occur when two separate
threads of execution have access to the same resource at the same time. Note that I’m using the
term “thread of execution” here to include processes on the same system and threads in the
same process or in different processes in the same host system.

To protect against race-conditions, multitasking systems use synchronization mechanisms,
such as mutexes, condition variables, and semaphores [Bute1997, Rich1997], to prevent con-
current access to shared resources. When one thread of execution has acquired a resource (also
called locking the resource), other threads are locked out, and go into a wait state until the re-
source is released (unlocked).

Naturally the interaction of two or more independent threads of execution is potentially
highly complex, and it is possible to have two threads each holding a resource and waiting for
the other to release. This is known as a deadlock. Less common, but just as deadly, is livelock,
whereby two or more processes are constantly changing state in response to changes in the oth-
ers and so no progress can be made.

Both race conditions and deadlocks are hard to predict, or test for, which is one of the prac-
tical challenges of multithreaded programming. Even though deadlocks are very easy to de-
tect—your executable stops—they are still hard to diagnose, since your process (or a thread
within it) has hung.

IThe only occurrence of the word thread is (C++-98: 15.1;2) when discussing threads of control in exception-handling.
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10.1 Synchronizing Integer Access

Since the contents of the processor registers are stored in the thread context each time a
process experiences a thread switch, the most basic form of synchronization is that which en-
sures that access to a single memory location is serialized. If the size of the memory to read at
that location is a single byte, then the processor will access it atomically. Indeed, the same
would apply to the reading of larger values according to the rules of the given architecture. For
example, a 32-bit processor would ensure that accessing a 32-bit value was serialized, so long
as the value was aligned on a 32-bit boundary. Serialization of access to nonaligned data may or
may not be provided by any given processor. It’s hard to imagine a workable architecture where
such atomic operations were not provided.

The processor’s guarantees are fine if you want to read or write platform-sized integers
atomically, but there are many operations that you would wish to have atomic that are not so be-
cause they are actually several operations in one. The classic one of these is incrementing or
decrementing variables. The statement

++1;

is really only a shorthand for

The increment of i involves a fetch of its value from memory, adding 1 to that value, and
then storing the new value back in i’s memory location, known as Read-Modify-Write (RMW)
[Gerb2002]. Since this is a three-step process, any other thread that is concurrently attempting
to manipulate the value of i can cause the result in either or both thread(s) to be invalidated. If
both threads are attempting to increment i, it is possible for the threads to be out of step, as in:

Thread 1 Thread 2
load i from memory
load i from memory
increment value
increment value
store new value to i

store new value to i

Both threads loaded the same value from memory, and when Thread 1 stores the incre-
mented value, it writes over the result of Thread 2. The net effect is that one of the increments
is lost.

In practice, different processors will have different operations for conducting these steps.
For example, on the Intel processor it could be implemented as follows:

mov eax, dword ptr [i]
inc eax

mov dword ptr [i], eax
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or, more succinctly, as
add dword ptr [i],1

Even in the second form, where there is a single instruction, the operation is not guaranteed
atomic on multiprocessor systems, because it is logically equivalent to the first, and a thread on
another processor may interleave in the manner described above.

10.1.1 Operating System Functions

Since atomic increments and decrements are the cornerstone of many important mecha-
nisms, including reference counting, it is very important that there are facilities for conducting
these operations in a thread-safe manner. As we will see later, atomic integer operations can
often be all that is required to make nontrivial components thread safe,” which can afford con-
siderable performance savings.

Win32 provides the InterlockedIncrement () and InterlockedDecrement ()
system functions, which look like the following

LONG InterlockedIncrement (LONG *p) ;
LONG InterlockedDecrement (LONG *p) ;

These implement preincrement and predecrement semantics. In other words, the return
value reflects the new value, rather than the old. Linux provides analogous functions
[Rubi2001]: atomic_inc_and test () and atomic_dec_and test (). Similar functions
may be available on a platform-specific basis.

Using such functions we can now rewrite our initial increment statement in a thoroughly
thread-safe manner

atomic_inc_and test (&i); // ++i

The implementation of such a function for the Intel processor would simply incorporate the
LOCK instruction prefix, as in:®

lock add dword ptr [i], 1

The LOCK instruction prefix causes a LOCK# signal to be expressed on the bus, and pre-
vents any other threads from affecting that memory location for the duration of the ADD instruc-
tion. (Naturally, it’s a lot more complex than this, involving cache lines and all kinds of magic
jiggery-pokery, but logically it makes the instruction atomic with respect to any other threads/
processors.*)

*The Synesis BufferStore component that I mentioned in Chapter 7 is one example, deriving its high speed from the
avoidance of any kernel object synchronization.

3This is not the actual instruction(s), but I’m trying to be brief!

*On multi-CPU machines, or machines with hyperthreading/multiple-core CPUs, threads may really be running in par-
allel, whereas on single CPUs threads only appear to execute simultaneously. In single-CPU machines, interrupts may
interrupt instructions (except for atomic ones).
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The downside to applying locking semantics is a cost in speed. The actual costs will differ
for different architectures: on Win32 the cost can be roughly 200—500% that of the nonlocked
variant (as we’ll see later in this chapter). Thus, it is not desirable simply to make every opera-
tion thread safe; indeed, the whole point of multithreading is to allow independent processing to
take place concurrently.

In practice, therefore, one normally determines whether to use atomic operations dependent
on a build setting. In UNIX, one tends to use the REENTRANT preprocessor symbol definition
to indicate to C and C++ code that the link unit is to be built for multithreading. In Win32 it is
_MTor MT _ or similar, depending on the compiler. Naturally, such things are abstracted
into a platform/compiler-independent symbol, for example, ACMELIB MULTI THREADED,
which is then used to select the appropriate operations at compile time.

#ifdef ACMELIB_MULTI_THREADED
atomic_increment (&i) ;

#else /* ? ACMELIB_MULTI_THREADED */
++1;

#endif /* ACMELIB MULTI_ THREADED */

Since this is ugly stuff to be dotted around, it’s also common practice to abstract the opera-
tion into a common function within which the preprocessor discrimination can be encapsulated.
Plenty of examples of this exist in common libraries, such as Boost and Microsoft’s Active
Template Library (ATL).

I should point out that not all operating systems provide atomic integer operations, in which
case you may need to resort to using an operating system synchronization object, for example, a
mutex, to lock the access to the atomic integer API, as we’ll look at later in the chapter.

10.1.2 Atomic Types

We’ve seen how we can simply use — — and ++ on the integer types for single threaded con-
texts, but for multithreading we need to use operating system/architecture primitives. The
downside of this approach is that even when we abstract the differences into a common func-
tion, say integer increment, it relies on all uses of the integer being done atomically. It’s
not terribly difficult to forget one, in which case you could have a race condition in your appli-
cation that’s very difficult to diagnose.

C++ is a language that aims to provide uniformity of syntax by allowing user-defined types
to appear as built-in types. So why not make atomic types that look like built-in types, except
that they operate atomically, in all respects? There’s no reason why not, and it’s actually very
simple to do:’

Listing 10.1
class atomic_integer

{

SThe volatile qualifiers in the class definition facilitate the use of volatile as a qualifier on the declaration of
any such variables, which is a reasonably common practice in multithreaded code, since it prevents the compiler from
manipulating variables in its internal registers, thus failing to synchronize the value with the actual memory location of
the variables. We’ll look at it in more detail in section 18.5.
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public:
atomic_ integer (int value)

: m_value (value)

{

// Operations
public:

atomic_integer volatile &operator ++() volatile

{

atomic_ increment (&m_ value) ;

return *this;

}

const atomic_ integer volatile operator ++(int) volatile

{

return atomic integer (atomic postincrement (&m value)) ;

}

atomic_integer volatile &operator —() volatile;

const atomic_integer volatile operator —(int) volatile;

atomic integer volatile &operator +=(value type const &value) volatile

{

atomic postadd (&m_value, value);

return *this;

}

atomic_integer volatile &operator -=(value type const &value) volatile;

private:

volatile int m value;

}i

This is a clear area in which C++ makes threading easier and simpler. However, there is a
question as to how much of the natural semantics of integer types are made available. The code
above shows how easy it is, given a library of atomic integer functions, to implement incre-
ment/decrement, and addition and subtraction. However, doing multiplication, division, logical
operations, shifting, and other operations are considerably more complex, and most atomic inte-
ger libraries do not provide such operations. If you want them in your code, that’ll have to be
the author’s get-out-of-jail-free card: an exercise for the reader.

The Boost atomic operations components take just this approach, providing platform-specific
versions of a type, atomic count, which provides only ++ and — operations (atomic
increment/atomic_decrement), along with implicit conversion (atomic_read), so if you
choose to opt out of anything much more complicated, you’ll be in good company.

10.2 Synchronizing Block Access: Critical Regions

For most synchronization requirements, a single atomic operation is not sufficient. Such cases
require exclusive access to what is known as a critical region [Bulk1999]. For example, if you
have two variables to update atomically, you must use a synchronization object to ensure each
thread is granted exclusive access to the critical region, as in:
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// Shared objects
SYNC TYPE sync_obj;

SomeClass shared instance;

// Somewhere in code called by multiple threads
lock (sync_obj) ;

int i = shared instance.Methodl (. . .);

shared instance.Method2 (i + 1, . . .);

unlock (sync_obj) ;

The two operations Methodl () and Method2 () must be conducted in an uninterrupted
sequence. Hence, the code wherein they are called is encapsulated within calls to acquire and
release a synchronization object. In general, the use of all such synchronization objects is very
expensive, and so ways in which their costs can be minimized or avoided are desirable.

There are two causes of the high-costs of synchronization objects to secure critical regions.
The first is that the costs of using the synchronization objects themselves can be high. For ex-
ample, consider the timings (in milliseconds) shown in Table 10.1, for 10 million acquire-
release cycles of four Win32 synchronization objects, and a control scenario consisting of two
empty function calls. The results plainly show that the cost of using synchronization objects is
considerable, up to 150 times that of a normal function call.

The second cost associated with synchronization objects for protecting critical regions is
that incurred by any threads that are blocked from entering the critical region. The longer the
critical region, the more likely this cost is to be incurred, and therefore it is good to keep critical
regions as short as possible or to break them into subcritical sections, as was discussed in sec-
tion 6.2. However, because the costs of the acquire and/or release calls can be very high, the
balance between breaking critical regions and the causing long waits for pending threads is a
delicate one. Only performance profiling can give you definitive answers on a case-by-case
basis.

10.2.1 Interprocess and Intraprocess Mutexes

Mutexes are the most common form of synchronization object for guarding critical regions
and, depending on the operating system, there can be two kinds: interprocess and intraprocess.
An interprocess mutex is one that may be referenced in more than one process, and can there-
fore provide interprocess synchronization. On Win32, such a mutex is normally created by

Table 10.1

Synchronization Object Uniprocessor machine SMP machine
None (control) 117 172
CRITICAL_SECTION 1740 831
Atomic inc 1722 914
Mutex 17891 22187
Semaphore 18235 22271

Event 17847 22130
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calling CreateMutex () and naming the object. Other processes may then access the same
mutex by specifying the same name to CreateMutex() or OpenMutex().® With
PTHREADS [Bute1997], the UNIX POSIX standard threading library, a mutex may be passed
to its child via a process fork, or can be shared via mapped memory.

Intraprocess mutexes, by contrast, are only visible to threads within a process. As they do
not need to exist across process borders, they can partially or completely avoid the costly trips
to the kernel, since their state can be maintained within process memory. Win32 has such a con-
struct, known as a CRITICAL SECTION, which is a lightweight mechanism that keeps most of
the processing out of the kernel, only making kernel calls when the ownership is to be trans-
ferred to another thread. There are considerable performance gains to be had by using in-
traprocess mutexes where suitable, as can be seen in Table 10.1, whose results were obtained by
an executable with a single thread. We’ll see later how the CRITICAL SECTION performs
when the application is multithreaded.

10.2.2 Spin Mutexes

There’s a special kind of intraprocess mutex, which is based on the ordinarily bad practice
of polling. Simply, polling is waiting for a condition to change by repeatedly testing it, as in:

int g_flag;

// Waiting thread
while (0 == g flag)

{}

. // Now do what we’ve been waiting for

This kind of thing chews up the cycles, as the polling thread is often’ given equal priority
with the thread that will be changing the flag to enable it to proceed. Polling is one of those had
ideas that ordinarily mark one out as a multithreading neophyte, suitable for apple-pie desks or
unlooked-for severance pay.

However, there are circumstances in which spinning is eminently suitable. Let’s first look
at an implementation of a spin mutex, the imaginatively named UNIXSTL? class spin mutex,
shown in Listing 10.2.

Listing 10.2
class spin mutex
{
public:
explicit spin mutex(sint32_ t *p = NULL)
: m_spinCount ((NULL != p) ? p : &m_internalCount)
, m_internalCount (0)

{1

®An unnamed mutex handle may also be passed to a child process through other IPC mechanisms, but naming is the
most straightforward mechanism.

"Depending on respective thread priorities and on any external events on which other threads may be waiting.
$The STLSoft subproject that maps UNIX APIs to STL.
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void lock ()

{

for(; 0 != atomic_write(m_spinCount, 1); sched yield())
{}
1

void unlock ()

{

atomic_set (m_spinCount, 0);
}
// Members
private:
sint32_t *m_spinCount;
sint32 t m internalCount;
// Not to be implemented
private:
spin mutex (spin mutex const &rhs) ;

spin mutex &operator =(spin mutex const &rhs) ;

}i

The mechanism of a spin mutex is very simple. When lock () is called, an atomic write is
performed to set the spin variable *m_spinCount (an integer) to 1. If its previous value was 0,
then the caller was the first thread to set it, and has “acquired” the mutex, so the method then re-
turns. If its previous value was 1, then the caller was beaten to it, by another thread, and thus
does not own the mutex. It then calls the PTHREADS function sched yield() to yield to
another thread, and when it wakes up again, it tries again. It repeats this until it succeeds. Thus
it is locked out of ownership of the mutex.

When the thread that acquired the mutex calls unlock (), the spin variable is set back to 0,
and another thread may then acquire it. The slight complication with the constructor and the
m_internalCount is that this class can be constructed on an external spin variable, which
can be very useful in certain circumstances (as we’ll see in Chapters 11 and 31).

Spin mutexes are not a good solution where there is a high degree of contention, but where
the likelihood of contention is very low and/or the cost of acquiring/releasing the synchroniza-
tion mechanism must be low, they can be an effective solution. Given their potential high cost, I
tend to use them only for initialization where contention is exceedingly rare, but theoretically
possible, and must be accounted for. Also, they are not “reentrant,” that is they cannot be
acquired multiple times from the same thread. Attempting to do so results in deadlock.

10.3 Atomic Integer Performance

Before we and move on to multithreading extensions (section 10.4) and Thread Specific Storage
(section 10.5), I want to take a look at the performance aspects of various atomic integer opera-
tion strategies.

10.3.1 Atomic Integer by Mutex

Where your atomic integer operations are not provided by your operating system, you
may need to resort to using a mutex to lock the access to the atomic integer API, as shown in
Listing 10.3.



140 Chapter 10 * Threading

Listing 10.3
namespace

{

Mutex s _mx;

}

int atomic_ postincrement (int volatile *p)

{

lock scope<Mutex> lock (s _mx) ;

return *p++;

}

int atomic_ predecrement (int volatile *p)

{

lock scope<Mutex> lock (s _mx) ;

return --*p;

The problem here is performance. Not only do you pay the sometimes considerable cost of
going to the kernel in the acquiring and release of the mutex object, but you also have con-
tention from several threads wanting to perform their atomic operations simultaneously. Every
single atomic operation within your process involves the single mutex object, which naturally
leads to a bottleneck.

I once witnessed a tragic attempt to ameliorate this cost by having a separate mutex for
each atomic function. Unfortunately, this proved very successful in reducing waiting times. As
I’'m sure you’ve guessed, this was thoroughly tested on a single-processor Intel machine. As
soon as the application was run on a multiprocessor machine, it fell in a heap.’ Since each
mutex protected the function, rather than the data, it was possible to have some threads incre-
menting a variable while another was decrementing it. All that was achieved was to prevent two
threads doing the same thing to the same integer at the same time. As with so many things in
multithreading, you cannot have confidence in your code until you’ve tested it on a multiproces-
sor machine.

Despite that abject failure, there is a way to share the contention between more than one
mutex in order to reduce the bottleneck. What is required is to base the mutex selection on a
property of the variable being manipulated. Well, there’s only one attribute we know about it:
its address. (We can’t very well know its value, since that is going to be changing.)

This looks something like the following:

namespace

{

Mutex s_mxs [NUM_MUTEXES] ;

}i

int _ stdcall Atomic_PrelIncrement By (int volatile *v)

{

size_t index = index_ from ptr (v, NUM_MUTEXES) ;

°It would suffer the same fate on modern hyperthreading single processor machines.
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lock scope<Mutex> lock(s_mxs [index]) ;

return ++* (v) ;

The function index from ptr () provides a deterministic mapping from an address to
an integer in the range [0, NUM _MUTEXES-1). It would not be suitable simply to perform
modulo division of the address, since most systems align data on boundaries of 4, 8, 16, or 32
bytes. Something like the following might be suitable:

inline size t index from ptr(void volatile *v, size_ t range)

{

return (((unsigned)v) >> 7) % range;

In testing on my own Win32 machine, I found 7 to give better performance than other val-
ues, but that’s unlikely to translate to other platforms, so you’d want to optimize this for each
platform.

10.3.2 Run Time Architecture Dispatching

I’d like to show you a little trick for enhancing performance of atomic integer operations
for the Intel platform. As we’ve learned, the Intel processor will conduct a single-instruction
RMW operation (such as ADD, XADD) uninterrupted, so on single processor machines a bus
lock is not required. Conversely, the bus must be locked for these operations on multiprocessor
machines. Since it’s much easier to build and ship a single version of code, it would be nice for
our code to only pay the performance cost of bus locking when necessary. Since the number of
instructions in either case is very small, we’d need a very efficient way of doing this, otherwise
the test would cause more latency than the savings gained. The solution looks like the simpli-
fied form'® shown in Listing 10.4, which is compatible with most modern Win32 compilers.

Listing 10.4
namespace
{
static bool s uniprocessor = is_host up() ;
}
inline _ declspec(naked) void _ _stdcall

atomic_increment (sint32 t volatile * /* pl */)

{

if (s_uniprocessor)

asm

—~ |

mov ecx, dword ptr [esp + 4]

add dword ptr [ecx], 1

!0The full implementations for these functions are to be found in the STLSoft libraries, which are included on the CD.
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ret 4

else

asm

—_

mov ecx, dword ptr [esp + 4]
lock add dword ptr [ecx], 1
ret 4

Even if you’re not familiar with the Intel assembler, you should be able to understand how
simple the mechanism is. The s_uniprocessor is true for uniprocessor machines, and false
for multiprocessor machines. If it’s true, the increment is effected without a lock. If it’s false,
the lock is used. Any possible race conditions in the instantiation of s_uniprocessor are
unimportant, since the default case is to apply the lock, which is benign.

In the performance tests below, this is the mechanism used by the Synesis Atomic_ API
and the WinSTL atomic functions.

10.3.3 Performance Comparisons

I’ve done a lot of talking about the various mechanisms available for atomic integer opera-
tions, so let’s look at some facts. Before we do so, I’d like to stress that the figures in this section
reflect the performance of Win32 operating systems on (single- and multi-) processor Intel archi-
tecture only. Other architectures and/or operating systems may have different characteristics.

I’ve examined seven strategies. For each there is a common global variable which is either
incremented or decremented by the thread. The first strategy—Unguarded—does no locking,
and simply increments or decrements the variable via the ++ or — operators. The next two use
the architecture-dispatching techniques: the Synesis Atomic_* library functions and Win-
STL’s inline functions. The fourth calls the Win32 Interlocked * system functions. The
final three use a synchronization object—the Win32 CRITICAL_SECTION, the WinSTL
spin mutex and the Win32 mutex kernel object—to guard access to the critical region, within
which the ++ or — operator is used to modify the variable. The results are shown in Table 10.2,
which includes the total times for 10 million operations for 31 contending threads for each strat-
egy. Since these were measured on different machines, the relative performance figures are also
obtained.

Deliberately, the test program that exercised the various locking mechanisms spawned an
odd number of threads, such that when all threads were complete the manipulated variables
should have a large non-zero value equal to the number of iterations. This was a quick valida-
tion that the operations were indeed atomic. All of the cases shown, including the Unguarded
manipulation on the uniprocessor machine behaved correctly. Verifying what we know about
the nonatomic nature of some single instructions on multiprocessors, the Unguarded/SMP case
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Table 10.2

Uniprocessor Machine SMP machine

Absolute % of Absolute % of
Synchronization Scheme (ms) unguarded (ms) unguarded
Unguarded ++/—— 362 100% 525 (incorrect) 100%
Synesis Atomic_* API 509 141% 2464 469%
WinSTL atomic_* inline functions 510 141% 2464 469%
Win32 Interlocked* API 2324 642% 2491 474%
Win32 CRITICAL_SECTION 5568 1538% 188235 35854%
WinSTL spin_mutex 5837 1612% 3871 737%
Win32 MUTEX 57977 16016% 192870 36737%

produced wildly different values on each run, indicating that threads were interrupting each
other’s RMW cycles.

In terms of the performance, several things stand out. First, the relative cost of all mecha-
nisms is higher on the multiprocessor machine, which indicates that multiprocessor caches are
things that don’t like being disturbed.

Second, as far as the architecture dispatching mechanism—the Synesis Atomic_ API and
the WinSTL atomic_* inline functions—is concerned, it’s fair to say that it does a very good
job on the uni-processor system, being only 22% the cost of the Win32 Interlocked *
system library functions, and only being 141% the cost of the unguarded ++/—— operators. On
the multiprocessor machine the additional cost over and above the LOCK for the processor test
is very acceptable, being only an additional 1%. I would say that if you’re writing applications
that need to work on both single and multithreaded architectures, and you want to be able to
ship a single version, you’re likely to see significant benefits from using this dispatching
technique.

The results show the well-known fact that mutexes, as kernel objects, represent a very
costly way of implementing atomic operations, and you’d be crazy to use them for that purpose
on Win32 systems.

Somewhat different from the mutex is the CRITICAL SECTION. I don’t know about you,
but much of the wisdom gleaned as I was learning multithreaded programming on the Win32
platform advocated the use of the CRITICAL SECTION as a much better alternative to the
mutex. Indeed, it appears to be about 10 times as fast as the mutex on the uniprocessor system.
However, it has about the same performance on the multiprocessor machine. Once again, you
need to test your code on multiprocessor systems, in this case to verify your assumptions about
the efficiency of the mechanisms you are using. I would say that the CRITICAL SECTION is
not a valid mechanism with which to get atomic operations; unlike the mutex I’ve actually seen
a lot of use of it in clients’ code bases.

You may wonder why anyone would use a spin mutex to implement atomic operations.
Well, the atomic operations provided in Linux’s <asm/atomic.h> are only guaranteed to pro-
vide a range of 24 bits. Furthermore, on some flavours of Linux, functions with the correct se-
mantics—increment the value and return the previous value—are not available. By using the
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conceptually simpler write/set functions the full-range atomic operations can still be provided,
without incurring too high a performance penalty.

I hope these results give you some pause for thought in your implementations. Remember
that this is Win32-specific; other architectures may have significantly different performance be-
haviors. But the main lesson is to profile, and to question your assumptions.

10.3.4 Atomic Integer Operations Coda

I’ve focused a great deal on atomic operations in this chapter, and I make no apologies for
doing so. There are three reasons for this. First, they are something that I think could be incor-
porated directly into C++, which probably cannot be said for other multithreading and synchro-
nization constructs, due to too-great differences or lack of broad availability.'!

Second, they are an extremely useful construct, whose power is in inverse proportion to
their simplicity. Using atomic integer operations only, one can achieve most or all the required
thread safety in a significant number of C++ classes, as is shown in later chapters.

Last, the level of discussion of atomic operations in the literature is scant, to say the least.
Hopefully by providing some focus here you’ll think of them more often.

Atomic operations are available on many platforms, either as system library functions, or as
nonstandard libraries, or by writing your own assembler versions. (I'm aware of the irony in
promoting the use of assembler in a book largely dedicated to showing advanced C++ tech-
niques; we live in a strange world.)

Even when we elect to use a (usually PTHREADS) mutex to implement our atomic opera-
tion, there are measures available to increase efficiency. The one thing to watch out for is not to
use spin-mutexes in such cases. You’ll be using several instances of a mutex class that are im-
plemented in terms of an atomic integer API that is implemented on one, or a few, global mu-
texes. In such a case, you should use some preprocessor discrimination to make your chosen
mutex a plain (PTHREADS-based) mutex, otherwise you’ll be impacting negatively on perfor-
mance, which won’t be what you’ll want or expect.

This is actually a good example of a broader truth to be found in multithreaded develop-
ment. In practice we really need to consider the details of our synchronization needs and the fa-
cilities of the host system(s) on which our applications will run. It would be great if C++ did
indeed stipulate atomic operations, but it’s my personal opinion that providing standard higher-
level synchronization primitives'? and maintaining maximum efficiency over different architec-
tures is a lot harder to do. As often the case, you are best served by being aware of all the
multithreading tools at your disposal ([Bute1997, Rich1997]).

10.4 Multithreading Extensions

Now that we’ve looked at a few issues pertaining to multithreading, it may have occurred to you
that it would be useful for the language to provide built-in support for multithreading opera-
tions. Indeed, several languages do provide multithreading constructs. The C++ tradition is to

"Having said that, there are some libraries, such as the excellent PThreads-Win32 (see Appendix A), which go some
way to unifying the threading experience.

2There are moves afoot to make this happen in a future version of the standard, at which point I hope all the foregoing
will be irrelevant. I doubt it, though.
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favor the addition of new libraries rather than new language elements. We’ll take a look at a
couple of potential areas, see how the language might provide them, and how we can implement
them using libraries (and a little bit of preprocessor trickery).

10.4.1 synchronized

D and Java have the synchronized keyword, which can be used to guard a critical re-
gion, as in:

Object obj = new Object () ;

synchronized (obj)

{

. // critical code

One way to incorporate a synchronized keyword into the language would be to auto-
matically translate the above code as follows:

{ __lock scope _<Object> _ lock _ (obj);

{

. // critical code

The lock scope  would be to all intents similar to the lock scope template de-
scribed in section 6.2. This would be pretty easy to do, and having an associated
std: :lock traits template would enable an instance of any traits-able type to be synchro-
nized in this way, which would not necessarily translate to a synchronization object lock.

This one is not a really strong contender for language extension, however, since with a
modicum of macros we can achieve the same thing. Basically, all that is needed is the following
two macros:

#define SYNCHRONIZED BEGIN(T, v) \
{ \
lock scope<T> _ _lock__(v);

#define SYNCHRONIZED END() \

}

The only slight loss is that the type of the object would not be deduced for us, and also that
the code looks somewhat less pretty:'?

SYNCHRONIZED BEGIN (Object, obj)

{

Bt could be argued that the uglification is actually a benefit, since it increases the profile of the synchronized status of
the critical region, which is a pretty important thing for anyone reading the code to take notice of.
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// critical code

}

SYNCHRONIZED END ()

If you don’t like the SYNCHRONIZED END () part, you can always get a little bit trickier
with your macro and define SYNCHRONIZED () macro as follows:

#define SYNCHRONIZED (T, V) \
for (synchronized lock<lock scope<T> >  lock  (v); \
_lock ; lock _ .end loop())

The synchronized lock<> template class is only there to define a state'* and to termi-
nate the loop, since we can’t declare a second condition variable within the for statement (see
section 17.3). It is a bolt-in class (see Chapter 22) and looks like:

Listing 10.5
template <typename T>
struct synchronized lock
: public T
{
public:
template <typename U>
synchronized lock (U &u)
: T (u)
, m_bEnded(false)
{}

operator bool () const

{

return !m_bEnded;

}

void end loop ()

{

m_bEnded = true;

}

private:
bool m bEnded;

}i

There’s another complication (of course!). As is described in section 17.3, compilers have
different reactions to for-loop declarations, and if we were to have two synchronized regions
in the same scope, some of the older ones would complain.

SYNCHRONIZED (Object, obj)

{

It doesn’t really define an operator bool (). We’ll see why they’re not used, and how to do them properly, in
Chapter 24.
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// critical code

// non-critical code
SYNCHRONIZED (Object, obj) // Error: "redefinition of _ lock "

{

// more critical code

Thus, a portable solution needs to ensure that each lock_ s distinct, so we have to
get down and dirty with the preprocessor.'®

#define concat__ (x, y) X ## vy
#define concat_(x, y) concat___ (x, y)
#define SYNCHRONIZED(T, v) \
for (synchronized lock<lock scope<T> > \
concat_(__lock ,  LINE ) (v); \
concat_(__lock , LINE _); \
concat_(_ _lock _, _ LINE ) .end loop())

It’s ugly, but it works for all the compilers tested. If you don’t need to be concerned with
anachronistic for behavior, then just stick to the simpler version. The full versions of these
macros and the classes are included on the CD.

10.4.2 Anonymous synchronized

There’s a twist on the object-controlled critical region, which is that sometimes you don’t
have an object that you want to use as a lock. In this case, you can either just declare a static one
in the local scope or, preferably, one in (anonymous) namespace scope in the same file as the
critical region. You could also build on the techniques for the SYNCHRONIZED () macro, and
produce a SYNCHRONIZED ANON () macro that incorporates a local static, but then you run
into a potential race condition whereby two or more threads might attempt to perform the one-
time construction of the static object simultaneously. There are techniques to obviate this, as
we’ll see when we discuss statics in the next chapter, but it’s best to avoid the issue. The name-
space scope object is the best option in these cases.

10.4.3 atomic

Getting back to my favorite synchronization issue, atomic integer operations, one possible
language extension would be to have an atomic keyword to support code such as the following:

atomic j = ++1i; // Equivalent to j = atomic preincrement (&i)
or, using the XOR exchange trick,'®

A CoA

atomic j = i ®= j *= i; // Equiv. to j = atomic_write(&i, J);

ISP°11 leave it up to you to do a little research as to why the double concatenation is required.

!6This is an old hacker’s delight [Dewh2003], and frequent interview question. Test it out—it works, although I think
it’s not guaranteed to be portable!
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It would be the compiler’s responsibility to ensure that the code was translated into the ap-
propriate atomic operation for the target architecture.'” Unfortunately, the differences between
processor instruction sets would mean that we’d either have to live with nonportable code, or
that only a very few operations would be eligible for atomic decoration. We certainly would
not want the compiler to use lightweight measures where it could and silently implement other
operations by the locking and unlocking of a shared mutex: better to have these things expressly
in the code as we do now.

It would be nice to have the atomic keyword for C and C++, for the limited subset of
atomic integer operations that would be common to all architectures. However, using the
atomic_* functions is not exactly a hardship, and it’s certainly as readable—possibly more
so—than the keyword form. Their only real downside is that they’re not mandatory for all plat-
forms; hopefully a future version of the C/C++ standard(s) will prescribe them.

10.5 Thread Specific Storage

All the discussion in the chapter has so far focused on the issues of synchronizing access to
common resources from multiple threads. There is another side to threading, which is the provi-
sion of thread-specific resources or as it is more commonly known, Thread-Specific Storage
(TSS) [Schm1997].

10.5.1 Re-entrancy

In single-threaded programs, the use of a local static object within a function is a reason-
able way to make the function easier to use. The C standard library makes use of this technique
in several of its functions, including strtok (), which tokenizes a string based one of a set of
character delimiters:

char *strtok(char *str, const char *delimiterSet) ;

The function maintains internal static variables that maintain the current tokenization point,
so that subsequent calls (passing NULL for str) return successive tokens from the string.

Unfortunately, when used in multithreaded processes, such functions represent a classic
race-condition. One thread may initiate a new tokenization while another is midway through the
process.

Unlike other race-conditions, the answer in this case is not to serialize access with a syn-
chronization object. That would only stop one thread from modifying the internal tokenization
structures while another was using them. The interruption of one thread’s tokenization by an-
other’s would still occur.

What is required is not to serialize access to thread-global variables, but rather to provide
thread-local variables.'® This is the purpose of TSS.

"Note that I'm suggesting the keyword would apply to the operation, not the variable. Defining a variable atomic and
then 50 lines down relying on that atomic behavior is hardly a win for maintainability. The clear intent, and grepability,
of atomic_* functions is much preferable to that.

!8And modern C and C++ run time libraries implement st rtok () and similar functions using TSS.
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10.5.2 Thread-Specific Data / Thread-Local Storage

Both the PTHREADS and Win32 threading infrastructures provide some degree of TSS.
Just for consistency, the PTHREADS [Bute1997] version is called Thread-Specific Data (TSD),
and the Win32 [Rich1997] version is called Thread-Local Storage (TLS), but it all amounts to
the same thing.

They each provide the means to create a variable that will be able to contain different val-
ues in each thread in the process. In PTHREADS, the variable is known as a key; in Win32 an
index. Win32 refers to the location for a key’s value in each thread as a slot. I like to refer to
keys, slots, and values.

PTHREADS’ TSD works around the following four library functions:

int pthread key create( pthread key t *key
, void (*destructor) (void *));
int pthread key delete( pthread key t key);
void *pthread getspecific( pthread key t key);
int pthread setspecific( pthread key t key
, const void *value) ;

pthread key create() creates a key (of the opaque type) pthread key t. The
caller can also pass in a cleanup function, which we’ll talk about shortly. Values can be set
and retrieved, on a thread-specific basis, by calling pthread setspecific() and
pthread getspecific().pthread key delete () is called to destroy a key when it is
no longer needed.

Win32’s TLS API has a similar quartet:

DWORD TlsAlloc (void) ;

LPVOID TlsGetValue (DWORD dwTlsIndex) ;

BOOL TlsSetValue (DWORD dwTlsIndex, LPVOID lpTlsValue) ;
BOOL TlsFree (DWORD dwTlsIndex) ;

The normal way in which these TSS APIs are used is to create a key within the main
thread, prior to the activation of any other threads and store the key in a common area (either in
a global variable, or returned via a function). All threads then manipulate their own copies of
the TSS data by storing to and retrieving from their own slots.

Unfortunately, there are several inadequacies in these models, especially with the Win32
version.

First, the number of keys provided by the APIs is limited. PTHREADS guarantees that
there will be at least 128; Win32 64." In reality, one is unlikely to need to break this limit, but
given the increasingly multicomponent nature of software it is by no means impossible.

The second problem is that the Win32 API does not provide any ability to clean up the slot
when a thread exits. This means that one has to somehow intercept the thread’s exit and clean
up the resources associated with the value in that thread’s slot. Naturally, for C++ folks, this is a

YWindows 95 and NT 4 provide 64. Later operating systems provide more (Windows 98/ME: 80, Windows 2000/XP:
1088), but code that must be able to execute on any Win32 system must assume 64.
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painful loss of the automatic destruction that the language provides for us, and can be next to
impossible to work around in some scenarios.

Despite PTHREADS providing a means for cleanup on thread termination, it still presents
an incomplete mechanism for easy and correct resource handling. In essence, PTHREADS pro-
vides us with immutable RAII (see section 3.5.1). Although this is a great improvement on
Win32’s absence of any RAII, there are occasions when it would be desirable to be able to
change the slot value for a given key. It’s possible to manually clean up the previous values, but
it’d be a lot better if that is done automatically for us.

The fourth problem is that PTHREADS assumes that the cleanup function is callable at the
cleanup epoch. If, at the time that any of the threads exit, an API has been uninitialized, then it
may no longer be valid to call a cleanup function that may call that API directly or indirectly.
Similarly, and even more likely in practice, if a cleanup function is in a dynamic library, the
cleanup function may no longer exist in the process’s memory, which means it will crash.

10.5.3 _ _declspec(thread) and TLS

Before we look at handling those challenges, I’d like to describe one TSS mechanism that
is provided by most compilers on the Win32 platform in order to ease the verbosity of using the
Win32 TLS functions. The compilers allow you to use the _declspec (thread) qualifier
on variable definitions, as in:

__declspec(thread) int x;

Now x will be thread specific; each thread will get its own copy. The compiler places any
such variables in a . t1s section, and the linker coalesces all of these into one. When the oper-
ating system loads the process, it looks for the . t1s section and creates a thread-specific block
to hold them. Each time a thread is created a corresponding block is created for the thread.

Unfortunately, despite being extremely efficient [Wils2003d], there’s a massive drawback
to this that makes it only suitable for use in executables, and not in dynamic libraries. It can be
used in dynamic libraries that are implicitly linked, and therefore loaded at process load time,
since the operating system can allocate the thread-specific block for all link units loading at ap-
plication load time. The problem is what happens when a dynamic library containing a .tls
section is later explicitly loaded; the operating system is unable go back and increase the blocks
for all the existing threads, so your library will fail to load.

I think it’s best to avoid __declspec (thread) in any DLLs, even ones that you’re sure will
always be implicitly linked. In the modern component-based world, it’s entirely possible that the
DLL may be implicitly linked to a component that is explicitly loaded by an executable produced by
another compiler, or in another language, and that does not already have your DLL loaded. Your
DLL cannot be loaded, and therefore the component that depends on it cannot be loaded.

10.5.4 The Tss Library

Having been bitten too many times by the four problems associated with the TSS mecha-
nisms of PTHREADS and Win32, I got on the ball and wrote a library that provides the func-
tionality I needed. It consists of eight functions, and two helper classes. The main functions,
which are compatible with C and C++, are shown in Listing 10.6:
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Listing 10.6

// MLTssStr.h - functions are declared extern "C"
int Tss_Init (void) ; /* Failed if < 0. */
void Tss_Uninit (void) ;

void Tss_ThreadAttach (void) ;

void Tss_ThreadDetach (void) ;

HTssKey Tss_CreateKey( void (*pfnClose) ()
, void (*pfnClientConnect) ()
, void (*pfnClientDisconnect) ()

, Boolean bCloseOnAssign) ;

void Tss_CloseKey ( HTssKey hEntry);
void Tss_SetSlotValue( HTssKey hEntry

, void *value

, void **pPrevValue /* = NULL */);
void *Tss_GetSlotValue (HTssKey hEntry);

Like all good APIs it has Init/Uninit? methods (see Section 6.3), to ensure that the API
is ready for any clients that need it. It also has two functions for attaching and detaching threads
that I’ll talk about in a moment.

Manipulating keys follows the convention in providing four functions. However, these
functions offer more functionality. For providing cleanup at thread termination, the Tss
CreateKey () function provides the optional callback function pfnClose; specify NULL if
you don’t need it. If you want that cleanup function to be applied to slot values when they are
overwritten, you specify true for the bCloseOnAssign parameter.

Preventing code from untimely disappearance is handled by the two optional callback func-
tion parameters pfnClientConnect and pfnClientDisconnect. These can be imple-
mented to do whatever is appropriate to ensure that the function specified in pfnClose is in
memory and callable when it is needed. In my use of the API I have had occasion to specify the
Init/Uninit functions for other APIs, or to lock and unlock a dynamic library in memory, or
a combination of the two, as necessary.

Tss_CloseKey () and Tss_GetSlotValue() have the expected semantics. Tss
SetSlotValue (), however, has an additional parameter, pPrevVvalue, over its PTHREADS/
Win32 equivalents. If this parameter is NULL, then the previous value is overwritten, and subject
to the cleanup as requested in the key creation. However, if this parameter is non-NULL, then any
cleanup is skipped, and the previous value is returned to the caller. This allows a finer-grained
control over the values, while providing the powerful cleanup semantics by default.

Being a C API, the natural step is to encapsulate it within scoping class(es), and there are
two provided. The first is the TssKey class. It’s not particularly remarkable—it just simplifies
the interface and applies RAII to close the key—so I’1l show only the public interface:

Listing 10.7
template <typename T>

class TssKey

2A little tip for all those who use British spelling out there: you can avoid pointless arguments about Initialise vs Initial-
ize with your U.S. friends by using a contraction.
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public:
TssKey ( void (*pfnClose) (T )
, void (*pfnClientConnect) ()
, void (*pfnClientDisconnect) ()

, Boolean bCloseOnAssign = true);

~TssKey () ;

public:
void SetSlotValue (T value, T *pPrevValue = NULL) ;
T GetSlotValue () const;

private:

Members; hide copy ctor and assignment operator

}i

The implementation contains static assertions (see section 1.4.7) to ensure that sizeof (T)
== sizeof (void*), to prevent any mistaken attempt to store large objects by value in the
slot. The values are cast to the parameterizing type, to save you the effort in client code.

The next class is more interesting. If your use of the slot value were to create a single entity
and then to reuse it, you’d normally follow the pattern in Listing 10.8:

Listing 10.8
Tss key func(. . .);

OneThing const &func (Another *another)

{

OneThing *thing = (OneThing*)key func.GetSlotValue() ;
1f (NULL == thing)

{

thing = new OneThing (another) ;
key func.SetSlotValue (thing) ;

}

else

{

thing->Method (another) ;

}

return *thing;

However, if the function is more complex—and most are—then there may be several
places where the slot value may be changed. Each one of these represents the possibility for a
resource leak due to a premature return before the call to SetSlotVvalue (). For this reason
the scoping class TssSlotScope, shown in Listing 10.9, is provided. I confess I have a per-
verse affection for this class, because it’s a kind of inside-out RAII.

Listing 10.9
template <typename T>

class TssSlotScope

{
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public:
TssSlotScope (HTssKey hKey, T &value)
m_hKey (hKey)
, m_valueRef (value)

, m_prevValue ((value type)Tss GetSlotValue (m_hKey))

m_valueRef = m prevValue;

}

TssSlotScope (TssKey<T> &key, T &value) ;
~TssSlotScope ()

{

if (m_valueRef != m prevValue)

Tss_SetSlotValue (m hKey, m valueRef, NULL) ;

}

private:

TssKey m key;

T &m_valueRef;

T const m_prevValue;
// Not to be implemented
private:

Hide copy ctor and assignment operator

}i

It is constructed from a TSS key (either TssKey<T>, or an HTssKey) and a reference to
an external value variable. The constructor(s) then set the external variable to the slot’s value,
via a call to Tss_GetSlotValue ().

In the destructor, the value of the external variable is tested against the original value of the
slot, and the slot’s value is updated via Tss_SetSlotValue () if it has changed. Now we can
write client code much more simply, and rely on RAII to update the thread’s slot value if
necessary.

Listing 10.10
OneThing const &func (Another *another)
{

OneThing *thing;

TssSlotScope<OneThing*> scope (key func, thing);

if( .. L)

thing = new OneThing(another) ;
else if( . . . )

thing = . . .;

else

return *thing;

} // dtor of scope ensures Tss SetSlotValue() is called
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So we’ve seen how to use the Tss library, but how does it work? Well, I'm going to leave
you to figure out the implementation,*' but we do need to have a look at how the thread notifica-
tions are handled. This involves the two functions I’ve so far not described: Tss Thread
Attach() and Tss_ThreadDetach (). These two functions should be called when a thread
commences and terminates execution, respectively. If possible, you can hook into your operat-
ing system or run time library infrastructure to achieve this. If not, then you will need to do it
manually.

On Win32, all DLLs export the entry point D11Main () [Rich1997], which receives notifi-
cations when the process loads/unloads, and when threads commence/terminate. In the Synesis
Win32 libraries, the base DLL (MMCMNBAS.DLL) calls Tss_ThreadAttach () when its
Dl1lMain () receives the DLL THREAD ATTACH notification, and calls Tss Thread
Detach () when it receives Tss_ThreadDetach (). Since it is a common DLL, all the other
members of any executable can just use the Tss library, without being concerned with the un-
derlying setup; it all just works.

Listing 10.11
BOOL WINAPI DllMain (HINSTANCE, DWORD reason, void *)
{
switch (reason)
{
case DLL_PROCESS ATTACH:
Tss_Init();
break;
case DLL_THREAD ATTACH:
Tss_ThreadAttach() ;
break;
case DLL_THREAD DETACH:
Tss_ThreadDetach() ;
break;
case DLL_PROCESS DETACH:
Tss_Uninit () ;

break;

On UNIX, the library calls pthread key create () from within Tss Init () to cre-
ate a private, unused key whose only purpose is to ensure that the library receives a callback
when each thread terminates, which then calls Tss ThreadDetach (). Since there is no
mechanism for a per-thread initialization function in PTHREADS, the Tss library is written to
act benignly when asked for data for a nonexistent slot, and to create a slot where one does not
exist when asked to store a slot value. Thus, Tss_ThreadAttach() can be thought of as a

210r to take a peek on the CD, since I’ve included the source for the library. Take care, though, it’s old code, and not
that pretty! It’s probably not that optimal, either, so it should be taken as a guide to the technique, rather than the zenith
of TSS library implementations.
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mechanism for efficiently expanding all active keys in response to a thread’s commencement,
rather than doing it piecemeal during thread processing.

If you’re not using PTHREADS or Win32, or you’re not happy to locate your library in a
Win32 DLL, you should ensure that all threads call the attach/detach functions. However, even
if you cannot or will not do this, the library is written such that when the final call to
Tss_Uninit () is received, it performs the registered cleanup for all outstanding slots for all
keys.

This is a powerful catchall mechanism, and the only problem you’ll have relying on this—
apart from tardy cleanup, that is—is if your cleanup function must be called from within the
same thread to deallocate the resource that was used to allocate it. If that’s the case, and you
can’t ensure timely and comprehensive thread attach/detach notification, then you’re out of
luck. What do you want—we’re only protoplasm and silicon!

10.5.5 TSS Performance

So far I’ve not mentioned performance. Naturally, the sophistication of the library, along
with the fact that there is a mutex to serialize access to the store, means that it has a nontrivial
cost when compared with, say, the Win32 TLS implementation, which is very fast indeed
[Wils2003f]. In one sense, there’s not an issue, since if you need this functionality, then you’re
going to have to pay for it somehow. Second, the cost of a thread switch is considerable, poten-
tially thousands of cycles [Bulk1999], so some expense in TSS will probably be a lesser con-
cern. However, we cannot dismiss the issue. Measures you can take to minimize the costs of the
Tss library, or any TSS API, are to pass TSS data down through call chains, rather than have
each layer retrieve it by itself and thereby risk precipitating context switches due to contention
in the TSS infrastructure. Obviously this cannot be achieved with system library functions, or
other very general or widely used functions, but is possible within your own application
implementations.

Further, for the Tss store it’s good to use the TssSlotScope template, since it will only
attempt to update the slot when the value needs to be changed.

As usual, the choice of strategies is yours, representing a trade-off between performance,
robustness, ease of programming, and required functionality.
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