An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘;‘;vh@ﬁ\g‘;itse-rco&‘;“

garth.Lancaster@mbf.com.au

An Introduction to Pantheios: Type-safe,
Efficient, Extensible, Generic Logging

Matthew Wilson & Garth Lancaster

[To readers of this verdgon: this document has been prepared in stages over the last 15months as the
Pantheios library has been refined (and production tested). In no way does this document represent
ether the find dructure or tone/qudity of the eventud aticley(s), but rather is a sketch of the man
ideas, and the generd thrust of the discusson. In other words, it's a taster for now, axd were
definitely up for comment, but we expect you to be moved more by the qudity of Pantheios than of
this (verson of) thiswrite up. ©

Note bits of this discusson come from Impefect C++, and adso from my next two books,
"Extended STL, volume 1" (which is nearly ready) and 'Breaking up the Monolith" (which is nearly
ready to be proposed). Thismay partly explain the somewhat patchy flow.]

[Note: the performance stuff is stuck on the end. That'll be done more comprehensively and
neatened up prior to the release of Pantheios]

[Note: It'simportant to redlise that Pantheios is primarily alogging AP library, rather than a
logging library. It isas an APl that we believeit can justly claim to be the "sweetspot”. If that's not
made clear inthe article, please let us know.]

Structure

Introduction

Introduction to Pantheios
Example code

Architecture

Genericity and Type-Tunnding
Handling Non-Shim'd Types
Stock Front/Back-ends
Drawbacks

. Effidency

10. Future Directions

11. Summary

12. About the author(s)

13. Notes and references

WCoNoOk~WNEF

Introduction

Logging is an important requirement of most non-trivial software systems, particularly daemons and other
unattended processes. In addition to being an invaluable aid to debugging such systems, it can also be an
important mechanism for the dissemination of systems management information.

Logging has an uneasy balance of costs and benefits. Logging sub-systems have a cost in binary object
size. Logging operations have non-negligible runtime costs, both in the formatting of the logging statements
— which may be complex — and in the packing and transport of formatted log messages.

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘aer‘;vh@ﬁﬂzssitse-rco&‘;“

garth.Lancaster@mbf.com.au

Traditionally, logging APIs have addressed well only a subset of the issues:

Variadic functions — fprintf (), sysl og(), and friends — usually have reasonable performance
characteristics, but are not type-safe.

The 10Streams are type-safe, but are (sometimes very) slow. Worse, their output is not atomic; in
multithreaded processes: elements from two or more statements executed in concurrent threads
may be interleaved in the output.

Compile time measures to eliminate logging of particular classes of output often rely on
Machiavellian tricks with the pre-processor, or on use of "stub streams"” — e.g. | ogout << "this
won't be in a release build"* << endl; —that still incur some runtime costs. They also
make a permanent decision about whether such elided information would be useful in production,
which doesn't always turn out right.

Runtime measures to eliminate logging of particular classes of output either result in pollution of the
client code with block scoping conditionals — if(AreWeLoggi ngNow(LOG | NFO)) {
very_expensive_log_statement(); } — or incur part of the full cost of the call by testing
whether the message is to be sent after some/all of its payload has been prepared.

One of the most popular logging infrastructure is SysLog, which incorporates the SysLog protocol and, on
UNIX systems, the syslog() system call. The SysLog protocol originated in BSD UNIX for the
dissemination of distributed logging information on a connectionless basis. Essentially SysLog messages
comprise a severity level, a facility, a timestamp, and a text payload. (The severity levels are DEBUG (7),
INFORMATIONAL (6), NOTICE (5), WARNING (4), ERROR (3), CRITICAL (2), ALERT (1) and FATAL (0).)
SysLog is a great protocol, and its popularity is due in no small measure to its simplicity, platform-
independence and specification of transport broadcast facilities.

The sysl og() API, however, is just a glorified printf (), with all the inherent type-unsafety that that
implies. It should be noted that, even for those of us who still cling on to the usability of printf () in
"normal” life, use of variadic functions in logging is hazardous precisely because it is the case that the most
important log statements may be those exercised (and therefore tested) the least often.

[NOTE TO SELF: Need to bring in discussion of log4XXX here, and note the problemsl/inefficiencies/lack of
type safety, etc. There's more than just SysLoqg.]

In summary:
- Logging is important.
Logging has a confounding mix of costs and benefits, seemingly without a sweet spot.
Logging APIs are generally a suboptimal mix of type-safety, atomicity, extensibility, efficiency, and so
on.
SysLog is a great transport protocol, but it is not the be-all and end-all of logging.

In this article we will introduce the Pantheios logging API that, we believe, provides an optimal solution to the
various pros and cons of traditional logging APls, and which is fully extensible to work with SysLog and/or
other logging transport mechanisms: It is the logging API sweet spot!l

Introduction to Pantheios

In working together over the last few years, we have experienced cross-pollination of ideas from our very
different backgrounds on a number of issues. In one project we had occasion to marry Garth's experiences
of enterprise logging with Matthew's concepts of Shims and Type Tunneling. The result is Pantheios.
Pantheios provides the following advantages over existing logging APIs:

You only pay for what you use
You only pay once for anything you use
Highly efficient

! We wish to make clear that we believe that Pantheios is the best available logging API library, not the best available logging library. It deliberately does
not incorporate the rich feature set of, say, the log4xxx family of libraries, precisely because those libraries can be used in combination with Pantheios (via
custom front-end/back-end).

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘aer‘;vh@ﬁﬂzssitse-rco&‘;“

garth.Lancaster@mbf.com.au

100% type-safety in C++

Thread-safe, in both debug and release modes

Atomic and independent (lock-free) log statement processing

Automatic library initialization

Simple to use

Generic

Extensible "loggable" application types

Extensible front-end message filtering, via simple C-APIs

Extensible back-end transports, via simple C-APIs

Portable, including Mac OS-X, UNIX and Windows operating systems

Compiler-independent, currently working with Borland (5.6+), Comeau (4.3.3+), Digital Mars (8.45+),
GCC (3.2+), Intel (6+), Metrowerks (8+), Microsoft Visual C++ (5.0+), and should work with any
reasonably modern compiler.

Comes with several stock front and back-end implementations "out of the box", including transports
based on UNIX SysLog, a custom Win32 SysLog implementation, ACE, Win32 debugger-and—,
fprintf(),Win32 Event log, COM Error Object, Win32 (colour-coding) Console, and more.

C++ application code sees a very simple view of the Pantheios libraries, via the application layer
components that are primarily composed of eight sets of functions, one for each of the SysLog severity
levels: |1 0og_DEBUE), | o0g_I NFORMATI ONAL(), | og_NOTICE(), |og_WARNINEX), | og_ERROR(),
l og CRITICAL(), | og_ALERT(), and | og EMERGENCY() , and a set of severity-explicit | og() functions.
These functions take between 1 and 32 parameters that together form a single log statement. (The
application layer components are auto-generated via Ruby script, so this range can be easily extended by
the user.) The parameters are strings, or types that could be strings (which we'll explain shortly). Thus, we
might see simple statements involving purely string types:

| og(PANFHEHOS—SEV—pant hei os: :informational, "Server::ClosebDown()");

or

voi d Server::ReadConfig(char const *configName)

{
if(!

{
| og_CRI TI CAL(" Coul d not open config ", configName, ": ", strerror(errno));

through to those involving a heterogenous mix of non-string types:

try
{
}
catch(std:: exception &x)

{
| og(PANTHEI OS_SEV_ALERT, "Unexpected exception: ", X)

and

string_t cndLine = . .

EXECPP_RC rc = execpp::exec(cndLine.c_str(), 0, &results
execpp_fn, NULL, NULL, NULL, &retcode);

i f (EXECPP_RC_SUCCESS ! = rc)

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘;‘;vh@ﬁﬂitsefo&‘;“

garth.Lancaster@mbf.com.au

{
/1 Log cndline, execpp error, and Wn32 error string
| og_ALERT("Failed to execute [", cndLine, "]:
rc, " (", stlsoft::error_desc(errno), ")");

in which the EXECPP_RC enumeration instance rc, the winstlstl soft:: error_desc temporary and the
st d:: excepti on reference x are all 'magically’ incorporated — via Type Tunnelling (see Sidebar) — into the
output without having to explicitly convert them to strings.

Pantheios Architecture

Pantheios has a four-part architecture, comprising application layer, core, front-end and back-end.—thatend
which interact with a client application as shown in Figure 1:

Client Application Cerrnenns 5
Pantheios
Application Layer
Components ;
Optional
custom

relationship

Pantheios Core

Pantheios stock : :
Eront-end or Pantheios stock Back- oot}

end or custom Back-end
custom Front-end

SN Optional custom relationship

The application layer components are the functions and classes that application code invokes to generate
log messages. The front-end determines whether a given message will be emitted, based on its severity

level. If the message is to be emitted the core efficiently prepares it and dispatches it to the back-end. The
back-end transports the message.

Application Layer

The application layer is comprised of several sets of auto-generated functions, for both C and C++ client
code, as follows:

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘aer‘;vh@ﬁﬂitse-rco&‘;“

garth.Lancaster@mbf.com.au

1 set of severity-level explicit | og() function template overloads (C++ only)
8 sets of severity-level implicit ~ function template overloads: | og_DEBUY),
| 0g_| NFORMATI ONAL() , and so on (C++ only)

1 set of pant hei os_Il og_N() functions: pant hei os_| og_1(), panthei os_log_2(), and so
on. (C and C++)

Each function set consists of 32-functions, catering for between 1 and 32 parameters. All told, there are 384
functions in the various function sets, and the task of writing such things is most certainly not for a human:
they are auto-generated by a Ruby script, which means they can be regenerated by the user according to
requirements, to restrict or expand the number of parameters catered for.

The function template overloads all work in the same way. Consider the 3-parameter version of | og() :

tenpl ate< typenane TO
, typename T1
typename T2
>
inline void | og(int severity
, TO const &vO
Tl const &vil
T2 const &v2)

i f (pant hei os_i sSeveritylLogged(severity))
{
| og_di spat ch_3(PANTHEI OS_SEV_EMERGENCY
, stlsoft::c_str_len_a(v0)
stlsoft::c_str_data_a(vO0)
stlsoft::c_str_len_a(vl)
stlsoft::c_str_data_a(vl)
, stlsoft::c_str_len_a(v2)
stlsoft::c_str_data_a(v2));

The function's responsibilities are split into two discrete steps. First, the core function
pant hei os_i sSeveri tyLogged() is called to determine whether or not the back end (or one of the back-
ends; see section Local/Remote Back-end Splitting) is currently emitting messages of the given severity
level. If it is, then the string access shim functions ¢c_str_l en_a() and c_str_data_a() are invoked on
the three parameters v0, vl and v2. The results are passed to the core function | og_di spatch_3(),
which takes them into the core.

For those unfamiliar with String Access Shims [GENSTR, IC++], ¢_str_data_a() returns a pointer to a
not-necessarily-nul-terminated array of characters ¢har const*)_or an instance of a type that is implicitly
convertible to such, and c¢_str_l en_a() returns the corresponding length of that array i ze_t). The
rules of C++ require that any temporary variables (see Type Tunneling sidebar) returned by the string access
shims stay alive until the | og_di spat ch_3() returns, so it's quite safe.

The definition of | og() ably demonstrates how Pantheios is able to offer all that it does and yet retain the
spirit of C: You only pay for what you use. If a given log statement is not emitted then the conversion of its
sub-expressions to string form and concatenation of the expressions into a log payload is not carried out.
The negligible "cost” in such a case involves the pushing of references to the arguments onto the stack plus
a call to pant hei os_i sSeveritylLogged().

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘aer‘;vh@?_xlzssitse-rco&‘;“

garth.Lancaster@mbf.com.au

Further, since the message parameters are converted here into the only form — char const* + size_ t —
acceptable to the core, no further conversion is necessary, nor is there any need to perform any further
examination of the contents of any of the message parameters, i.e. there are no cycle-consuming strl en()
calls down the line.

It should be equally clear how the claimed 100% type-safety is inherent in the use of the shims. If you pass
an instance of a type for which they're not defined compilation fails. This is anything but the case with
variadic logging functions, where a bug can easily get past the compiler and lurk in the executable until just
the wrong moment._(This is also true for ostensibly type-safe APIs like |OStreams, where the implicit
acceptance of void const* can lead to many an unhappy trail through the code to try and work out why a
particular log statement element has been displayed incorrectly. In an emergency/alert code path that is
travelled all but never, this activity can happen a long time after coding.)

For C client code, the application layer provides the set of pant hei os_I og_N() functions, as in:

int pantheios_|l og_1(pan_sev_t severity
, char const *ptr0O

, int sizeQ); /* = -1 */
i nt pantheios_|l og_2(pan_sev_t severity

, char const *ptrO

, int si ze0

, char const *ptrl

, int sizel); /* = -1 */

These take pairs of string pointer + length. If the length is -1, then the string is assumed to be nul-
terminated, and the length determined with st rl en() . Use of these functions looks like:

i nt numdsers = 1000000
char szNumUsers[101];

pant hei os_| og_3(PANTHEI OS_SEV_ALERT

, "We're sure there're likely to be >", -1
, SzNumUsers, sprintf(&szNunUsers[O0], "%®20d", numJsers)
, " satisfied users of Pantheios", -1)

Naturally, C++ client code is much nicer than the C equivalent.

Finally, honesty requires us to mention that the core API also includes the printf()-like
pant hei os_printf () and pant hei os_vpri nt f () functions.

int pantheios_printf(pan_sev_t severity
, char const *format
v)

i nt pantheios_vprintf(pan_sev_t severity
, char const *format
, va_list args);

But these are not type-safe, so we keep them in a cardboard box in the scullery, and deplore their use.

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘;‘;vh@ﬁﬂitsefo&‘;“

garth.Lancaster@mbf.com.au

sidebar: String Access Shims

The technology underpinning the powerful mix of genericity, efficiency and type-safety in Pantheios is String
Access Shims, described in the article ‘Generalised String Manipulation: Access Shims and Type Tunneling”
(CUJ, August 2003) and in Imperfect C++ [IC++]. These are a near-ubiquitous feature of the STLSoft
libraries.

Shims represent a mechanism for generalisation between (aspects of) conceptually related by physically
unrelated types.

Shims afford moderate to high cohesion with minimal (and often zero) coupling.

A shim is an unbounded suite of functions with the following characteristics (NICO):
- Name — the namespace and function name, e.g. stlsoft::c_str_ptr

Intent — the common purpose of all functions constituting the shim, e.g. return a pointer to nul-
terminated non-NULL character string representing the instance of the types for which the shim is
defined
Category — the shim category, i.e. Attribute, Access, Composite, Control, Conversion, Logical. The
category describes the naming, the behaviour and the constraints on use of the shim. For example,
the return values of Conversion and Access shim instances must be used only within the statement
within which the shim is invoked. (See later in this article for further discussion.)
Ostensible Return Type — the type which is returned by the shim functions, or to which the return
type of (some of) the shim functions must be implicitly convertible. (See later in this article for further
discussion.)

For example, the following are

Essentially, a shim is unbounded suite of overloaded functions that manipulate logically related but physically
unrelated types — e.g. std::string and char const* -in a generic manner. There are Attribute Shims,
Logical Shims, Conversion Shims, and Control Shims. Access Shims are a composite of Attribute Shims and
Conversion Shims that elicit a common property of the types to which they are applied and which may
involve conversions via the return of temporary variables that are themselves implicitly convertible to the
target type.

By utilising the c_str_data_a and c_str_len access shims, the Pantheios application is compatible with any
type for which these shims are defined, and are thereby both generic and infinitely extensible without
requiring any changes to the Pantheios code base.

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘aer‘;vh@ﬁﬂitse-rco&‘;“

garth.Lancaster@mbf.com.au

sidebar: Type Tunneling

The Type Tunneling pattern describes the situation where a (usually lightweight) generic conversion layer
(called the Tunneling Layer) effects compatibility between arbitrary types in application code and the limited,
fixed type (or types) acceptable to an API. Type Tunneling is usually, though not always, associated with the
use of Shims. In such cases, the shims "[allow] an external type to be tunneled through an interface and
presented to the internal type in a recognised and compatible form" [IC++].

In the case of Pantheios, it is the string access shims c¢_str_data_a and c_str_len_a which abstract each
log statement component into a string form, thereby ‘tunneling' them through the Pantheios application layer
functions — 1 og(), | og_DEBU), and so on — to the Pantheios core API, where they are manipulated in

the "recognised and compatible form" of the pan_sl i ce_t type.

struct pan_slice_t

{
size_t |l en;
char const *ptr;

Consider the following fragment:

#include <constl/string_access. hpp>

#i ncl ude <wi nstl/string_access. hpp>

HWND wnd =
VARI ANT var =
pant hei os:: | og_DEBUZX "v=", var, "; w=", wnd);

This 4part statement results in a log entry consisting of the two prefix string literals concatenated with the
string forms of the given HWND and VARI ANT variables. The WIinSTL ¢_str_| en_a(HWND) function
establishes the window text length using :: Get W ndowText Lengt h(), and elicits the window text in
c_str_data_a(HWD), returning a temporary instance of a class — c¢_str_ptr_HWD proxy - that
provides an implicit conversion to char const*. Analogous behaviour is provided in the COMSTL shim
functions for the COM VARI ANT type. The temporaries are held "alive" until the statement they are in is
complete, by which time the log statement has been prepared and emitted.

The construction of these types and the elicitation of the string forms have some cost, but this cost would
have to be borne somewhere in the application, whatever the logging APl being used. And remember, the
| og_DEBUGE) function will not even get to the business of invoking the string access shims if the DEBUG
severity level is not being logged. In that case, the cost of manipulating the parameters is just the cost of
putting four references to the stack, which is not exactly going to break the bank.

Core Layer

The responsibility of the core is to receive the message parameters and concatenate them into a contiguous
nul-terminated string, and then emit them to the back-end(s). Because the application layer components
pass down generic types, the core is entirely independent of, and oblivious to, the formulation of particular
log statements: it just concatenates them and sends them to-the back-end{s)on.

struct pan_slice_t

{

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘aer‘;vh@ﬁﬂzssitse-rco&‘;“

garth.Lancaster@mbf.com.au

size_t | en;

char const *ptr;

int pantheios_init(void);

voi d pant hei os_uninit(void);

i nt pantheios_isSeveritylLogged(pan_sev_t severity);
char const *pantheios_severityString(pan_sev_t severity);
i nt pantheios_| og_n(pan_sev_t severity
size_t nunsSl i ces
pan_slice_t const *slices);

Pantheios is a reference-counted API [IC++]. In other words, the first successful call to pant hei os_i ni t ()
initialises the library, including the front and back-ends, and each subsequent call increases the reference-
count. Conversely, the library is only uninitialised when a matching number of calls to
pant hei os_uni ni t () are made. Thankfully you don't have to care about the initialisation logic, since the
Pantheios root C++ header, pantheios/pantheios.hpp, includes pantheios/cpp/initialiser.hpp, which uses
Schwarz counters ([IC++]) to ensure that the library is automatically initialised and ready for use, irrespective
of which C++ compilation unit happens to have its ron-local static objects (i.e. globals) introduce first. You
can read up on these techniques in Part 2 of Imperfect C++, or just take our word for it. This can be
suppressed by definition of the PANTHEI OS_NO _AUTO | NI T pre-processor symbol.

(Note that, by default, the Schwarz counter initialisation is not performed in dynamic libraries, in order to
allow for control over the time of initialisation and (slightly more) graceful handling of initialisation failure. It
can be forced by definition of PANTHEI OS_FORCE_AUTO | NI T.)

a. Atomic. Because the subexpressions of alog-statement are concatenated and emitted as a
sngle string, there is no possibility of one thread emitting a message while another is
hafway through (as long as a usaer hasn't plugged in a non-thread-safe back-end in amulti-
threaded program, of course).

Concatenation occurs within a stack instance of stlsoft::auto_buffer (See "Efficient Variable
Automatic Buffers”), whose internal size (configurable at compile-time) is 2K. Thus, any messages whose
total length is <= this size can be constructed and emitted without a single memory allocation.

Front-end Layer

The role of the front-end is to define the process identity and to arbitrate log requests, based on severity
level. Each time a log statement is executed, the core consults the front-end, via the
pant hei os_fe_ i sSeverityLogged() function, as to whether the given severity is to be logged. If it is,
then the Pantheios code running in the application layer prepares the entry arguments as string slices, and
passes them to the core (via pant hei os_l| og_n()).

int pantheios_fe_init(int reserved, void **ptoken);

voi d pantheios_fe_uninit(void *token);

char const *pantheios_fe_processldentity(void *token)

int pantheios_fe_isSeveritylLogged(void *token, int severity, int backEndld);

pant hei os_fe_init() is called by the core when it is initialising, and returns >=0 to indicate success.
pant hei os_fe_uninit() is called by the core when it is uninitialising (or when another part of the core
has failed to initialise after the Front-end). pant hei os_fe_processldentity() is called during
initialisation and returns the identity of the process, to be used by the back-end when formatting log
messages for output.

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘;‘;vh@ﬁﬂitsefo&‘;“

garth.Lancaster@mbf.com.au

The Front-end implementation can, via the pt oken parameter of pant hei os_fe_i ni t (), optionally return
a context token that the core will maintain on its behalf and give back to it on each call to the other functions.
This can be a class instance, or anything else appropriate to the implementation. Front-end implementations
must set * pt oken, however, even if it's to NULL.

Each of these functions is called at most once, and always in the main thread?, so need not have any special
measures for thread-safety. The remaining function, pant hei os_fe_i sSeveritylLogged(), is used to
arbitrate message preparation and dispatch. It receives the putative message's severity level, and a back-
end identifier. This latter parameter may be 0, to indicate any/all output, or another value to identify a
particular back-end in the case where Local/Remote Back-end Splitting (see section be.lrsplit) is being
used. This function can be called at any time, from any thread, so must be thread-safe and should be
efficient and non-blocking. Experience has shown that this is readily achieved, even in cases of sophisticated
filtering.

Back-end Layer
The role of the back-end is to provide transport of the message emitted from the core, along with, optionally,
any additional formatting as may be appropriate. The back-end API consists of three simple functions:

i nt pantheios_be_init(char const *processldentity
i nt reserved
, void **pt oken);
voi d pant hei os_be_uninit(void *token)

i nt panthei os_be_| ogEntry(void *feToken
voi d *beToken
, int severity

char const “*entry
size_t cchEntry);

As with the Front-end API, the initialisation and uninitialisation functions are called, at most, once per
process, in the process main thread, and provide the facility of associating a core-context with the back end.
The third function, pant hei os_be_| ogEntry(), is responsible to receiving the message emitted from the
core. It takes the front-end and back-end tokens derived during initialisation, the message severity, the nul-
terminated message payload, and the length (excluding nul-terminator) of the payload. The front-end token
facilitates back-end splitting (where a Composite back-end passed off output to several concrete back-ends;
see later). Specifying the severity allows back-ends to dispatch to different streams, and, as is the case with
the SysLog protocol, to incorporate the severity in the log message. Proving both nul-termination and length
removes the need for back-ends to apply one or determine the other to suit the underlying transport APIs.
Naturally, if the process is multi-threaded, pant hei os_be | ogEntry() must be safely callable from
multiple concurrent threads.

Handling Built-in and User-defined Types

The Application layer functions implicitly handle all types that are strings or that can be expressed, via String
Access Shims, as such, including char const*, char[], std::string, stlsoft::string_view,

VARI ANT, ACE_String Base, HWND, struct tm FILETIME, std::exception. However, there are
many types, including built-in and user-defined types, which are not handled automatically.

Built-in Types
For built-in types, Pantheios provides the converter classes i nt eger, real and poi nt er, which are used
as follows:

123,
456;

short s

i nt

2 or whatever thread makes the first call to pantheios_init(), in the case where auto-initialisation is suppressed.)

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘aer‘;vh@ﬁﬂitse-rco&‘;“

garth.Lancaster@mbf.com.au

| ong | = 789;
fl oat f = 0.123;
doubl e d = 0. 456;
| ong doubl e I d = 0.789;
voi d *p = &l ;

usi ng namespace pant hei os;

| og_1 NFORMATI ONAL(
"I ntegers (", integer(s, 4 | fnt::zeroPadded), ", ", integer(i), ", ", integer(l), ");
"floating points (", real(f), ", ", real(d), ", ", real(ld), ");
"and a pointer (", pointer(p, fm::hex | fnt::zeroXPrefix), ")");

which outputs

"Integers (0123, 456, 789); floating points (0.123, 0.456, 0.789); and a pointer (0x12ff28)"

These inserter classes maintain a pointer/reference to the variable and any formatting information, and only
effect conversion on demand, when (the first of) their dat a() or | engt h() methods are invoked.

Other Stock Inserters

Two other stock inserters are also supplied. The bl ob inserter class represents a set of bytes as a sequence

of hexadecimal tokens, which may be grouped in powers of 2 (0, 1, 2, 4, ...32), and groups and/or lines,
separated by user-defined sequences. For example, the following code:

int ar[2] = { 0x00112233, 0x44556677 };
char s[]
std::string str("def");

“abc":

pant hei os: : | og(pant hei os: :notice, "s=", s, ", blob=", pantheios::blob(ar, sizeof(ar), 2, "-"),
str=", str);
produces the output:
s=abc, bl ob=2233-0011-6677-4455, str=def
The other stock inserter is b64, which converts a set of bytes to a base-64 string. This uses the b64 library

(http://synesis.com.au/software/b64.html), however, and so is not linked in to the Pantheios core. It must be
linked separately, along with the requisite b64 library.

User-defined Types

User-defined types may be handled in three ways:

1. By writing explicit conversion code in your application and passing the result as a parameter in a log
statement, or

2. By writing explicit conversion functions that return an instance of a type, such as std: : stri ng, that
is handled automatically, or

3. By writing a custom inserter class

4. By defining string access shim functions for your type.

1.1.1 Option 1: Writing explicit conversion code

Consider the following code:

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘aer‘;vh@ﬁﬂitse-rco&‘;“

garth.Lancaster@mbf.com.au

voi d ChangeW ndowSi ze(RECT const &rc)

{
i f(pantheios::isSeveritylLogged(panthei os::debug))

{
char s[200];

sprintf("od, %, %, %", rc.left, rc.top, rc.right, rc.bottonl);
| og_DEBUJ " Changi ng wi ndow size to: ", s);

This is a bad choice for several reasons. It's hard coding, which is both annoying to have to do, and likely to
suffer from copy-pastitis if you want to log another RECT somewhere else. It's verbose, whereas logging
needs to impinge minimally on application code for it to be attractive to developers, and to remain effective
throughout the lifetime of a product. And it's inefficient, unless, as shown above, you make the explicit test
for the severity level before effecting the conversion(s).

Option 1 is really what Pantheios is designed to avoid.

1.1.2 Option 1: Write a Conversion Function to a Loggable type

This is a big improvement over option 1, but it still has problems. First, the log statement is more cluttered,
though that's a minor problem. A little more serious is that to use it one must know its name, and once a
large library of such things develop, it becomes an effort to remember what they're called and where they
are.

std::string format (RECT const &rc)

{
char s[200];

n =sprintf(. . . // conversion as above
return std::string(s, n);

voi d ChangeW ndowSi ze(RECT const &rc)

{
| og_DEBUG(" Changi ng wi ndow size to: ", format(rc));

But the main objection is that it too is inefficient, because the conversion from RECT to st d: : st ri ng occurs
prior to the severity test.

1.1.3 Option 4: Write a Custom Inserter class

Using the stock inserters as an example, one can write a converter class, as in:

cl ass rect

{
public:
rect (RECT const &rect)
m len(-1)
, m.val ue(val ue)
{}

public:

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘aer‘;vh@ﬁﬂzssitse-rco&‘;“

garth.Lancaster@mbf.com.au

char const *data() const
{

if(-1 == mlen)

{

convert_();

}

return m buff;
}
size_t size() const
{

if(-1 == m.len)

{

convert_();

}

return static_cast<size_t>(m.len);

private:
voi d convert_() const; // const_cast<>, and then invoke .
voi d convert_(); /'l . . . this one, which does what format() above does

private:
char m_buf f [200] ;
int m_| en;
RECT const &m val ue;

namespace stl soft

{
inline char const *c_str_data_a(rect const &r)
{
return r.data();
}
inline size_t c_str_len_a(rect const &r)
{
return r.length();
}
}

voi d ChangeW ndowSi ze(RECT const &rc)

{
| og_DEBUG(" Changi ng wi ndow size to: ", rect(rc));

This is efficient, and reusable. It is a lot of code to write, however, so you'd only want to do this for regularly
used types.

1.1.4 Option 1: Define String Access Shims For Your Type

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘aer‘;vh@ﬁﬂitse-rco&‘;“

garth.Lancaster@mbf.com.au

This option requires the definition of two shim functions (and their inclusion into the st sof t namespace),

but it leads to more eegant statements, and the adapted type is always automatically compatible so long as
the shim functions are included in the compilation unit.

namespace stl soft

{
CString c_str_data_a(RECT const &rc);
size_t c_str_len(RECT const &rc);

} /1 namespace stlsoft

voi d ChangeW ndowSi ze(RECT const &rc)

{
| og_DEBUJ " Changi ng wi ndow size to: ", rc);

Further, it is possible with many types for the length of the string to be calculated exactly without performing
a string conversion, further increasing efficiency.

Stock Front and Back-ends

Pantheios comes bundled with a number of stock front and back-ends, which cover all the most common
logging scenarios on the UNIX and Windows operating systems. No changes to client code are required: for
example, you can change the transport mechanism for you application merely by re-linking to a different
back-end library.

fe.simple

The stock front end is called fe.simple, and it provides a default definition of the Front-end functions. As you
can see from Listing X, it requires nothing more of the application code than the definition of a process
identity string

extern "C' const char FE_SI MPLE_PROCESS | DENTI TY[];

Liding X
/'l fe_sinple.c
#i ncl ude <pant hei os/ pant hei os. h>

#i ncl ude <panthei os/frontend. h>
extern const char FE_SI MPLE_PROCESS | DENTI TY[];

int pantheios_fe_init(int reserved
void **ptoken)

{
*pt oken = NULL;
return O;
}
voi d pantheios_fe_uninit(void *token)
{1
char const* pantheios_fe_processldentity(void *token)
{
return FE_SI MPLE_PROCESS_I| DENTI TY;
}

int pantheios_fe_isSeveritylLogged(void *token

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘;‘;vh@ﬁﬂitsefo&‘;“

garth.Lancaster@mbf.com.au

, int severity
int backEndl d)

{
#i f def NDEBUG

return severity < PANTHEI OS_SEV_DEBUG,
#el se /* ? NDEBUG */

return 1;
#endi f /* NDEBUG */

}

Several stock back-ends are supplied, catering for a number of popular log "streams", including:

a. ACE (Adaptive Communications Environment) logger

b. fprintf(), to stderr (WARNING => EMERGENCY) or stdout (DEBUG, INFORMATIONAL,
NOTICE)

c. SysLog (UNIX-only), using the sysl og() API

d. Win32syslog. This effects the equivalent to UNIX's sysl og() for Pantheios on the Win32 operating
system

e. Win32 Debugger. Uses the Qut put DebugSt ri ng() Win32 API function

f. L/R split. This is a pseudo back-end that actually splits the output into local and remote back-end
streams.

g. Win32 Event Log

h. COM Error Object. Log statements of INFORMATIONAL=>EMERGENCY are used to set the
thread's COM error object information.

Local/Remote Back-end Splitting

There are cases where having a single output stream is not sufficient. Rather than presenting users of the
libraries with extra effort, we have provided the Local/Remote Back-end Splitting library, be.lrsplit, which
supports differentiated local/remote output. The be.Irsplit library implements the back-end API, in terms of
its own output API, consisting of pant hei os_be | ocal _init(), panthei os_be | ocal _uninit(),
pant hei os_be renote_init(), pant hei os_be renote_uninit(),
pant hei os_be | ocal | ogEntry(), and panthei os_be renpote | ogEntry(), whose signatures
ape those of the back-end API.

Extending Pantheios via Custom Front/Back-ends

If these stock libraries do not satisfy your needs, you can easily implement your own custom variant
according to the APIs prescribed, using the sock implementations as an example. And you have the ability
to effect interactions between the application and front-end/back-end. For example, in one of our commercial
projects — the Auto-claims Switching Service (ASS), which carries all real-time medical insurance claims for
continental Australia — we use be.lrsplit, coupled with the Win32Console and Win32syslog back-ends, to
provide local console output and/or network SysLog monitoring. We use a custom front-end that
communicates, via shared memory, with a runtime process/stream selection GUI application (see Figure X),
to enable us to select at runtime which message severity of the eight severity levels from which server
processes will be emitted locally and/or remotely. This product suite is currently serving several million
claims messages daily, and the cost of Pantheios logging (when Debug and Informational levels are
switched off, of course) on performance is virtually undetectable. Naturally, when switching on Debug, one
gets all contents of every message on every channel, and that can slow things a little. But that's logging.

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘;‘;vh@ﬁﬂitsefo&‘;“

garth.Lancaster@mbf.com.au

- ASSLogContralier) 458 [.11
Locs | Aepos | Lipdale bom remeie Tepann Fricelies: O-enice
Swarity conbl

Al Energercy At Croesl Enee walnng Hatice Irhairahaonal Dighiiy
I Glooel [~ on Fon [an [an F on [an [+ on F on F m
1 ASS2 [¥ -on W on W on [¥ on = on F oon [¥ on F oon T m
& afSudilaenm [7 on ¥ on F on [¥ on = F o [¥ on I on (-
JF 855005 [= on W on o @ an = on o [on I oh (-
& AESDamoncEidge [F on o K on ¥ an Foon F oo ¥ on o W o
T AP [+ on W o W oon [¥ on & on o ¥ on I on o
E beclub = on * on F an ¥ aon = on F an ¥ on I on o
I CLTPubksher [on = on [o [# on = oon [o [# an & oon [on
B Iriziceptal ron oo I~ o o roon o = on o I~ o« Mot | Do |

#+ ASSLogController ﬂ o m] [T
I Lozal | Remaote | U pdate from remaote I

— Severity control
All Emergency Blert srmational Debug

0 Global ¥ on [on = on o aon [on

1: 4552 [7 on ¥ on v on ¥ aon [on

2 Aa55AudiDaemon 7 on v on v on v on [on

2 ASSCIS ¥ on v on v on ¥ aon [on

4 A55DiamondBridae [7 on ¥ on ¥ on an [on

B ASSPw [Z on v on v on v an [on

E: bestub [on [on [on [an [on

7: CLTPublisher o [on W on [on [on 3
8 Interceptar 7 on ¥ on [on f I on Close I

Front-end — Back-end cooperation

The four-part architecture ensures a clean separation between the various roles and responsibilities. In
particular, the front-end deals with message filtering, and the back-end(s) handle transport. Any additional
front-end <> back-end functionality is handled outside the library. For example, we might want to associate
an fprintf()-based logging with a specific stream. This can be handled by the front-end and back-end
code being mutually aware, such that when Pantheios calls down to pant hei os_be_init (), it can create
an object (to be returned as the t oken) which will have a hook into something in the front-end, such that it
actually sends calls to pant hei os_be_| ogEntry() ‘up’ to the front-end library, which can pass calls off to
the appropriate destination.

Note: the core and the application layer are written primarily in C++ — fairly advanced C++, to be sure — but

the front and back-end APIs are pure C and most of the stock front and back-end libraries are written in C.
Thus, C/C++ programmers who are more comfortable in C can easily extend Pantheios.

Drawbacks

There are three minor drawbacks to using Pantheios:

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘;‘;vh@ﬁﬂitsefo&‘;“

garth.Lancaster@mbf.com.au

First, in the case where an argument is of a type not convertible to string form via a string access shim (or
that string access shim is not visible to the given compilation unit), the compilation error messages that result
are not completely obvious. However, most compilers make mention of the string access shim functions
c_str_data_a() and/orc_str_| en(), se-and this usually suffices to turn on the mental light bulb.

Second, There is no facility for, say, specifying the format for all floating-point numbers in a single statement,
a la 10Streams' manipulators. This is partly because Pantheios statements are processed atomically — a
good thing in a logging API! — and partly because it would introduce a degree of complexity that, so far, we
have not considered worthwhile. We've found that the frequency of floating-point statements is sufficiently
low that the r eal converter class eminently suffices.

Third, using Pantheios means using STLSoft. Some open-source users require that each library is entirely
independent, which is a perfectly reasonable point of view when one considers just how many problems one
gets bogged down with when mixing many open-source libraries. However, due to the open-for-extension
nature of shims, it simply doesn't make sense for users of Pantheios to have their own shims defined, and
therefore miss out on the large (and growing) range of string access shims available as part of STLSoft. (It's
also worth noting that STLSoft is 100% header-only, and attempts to exist at the lowest level above the API
and it thus a highly lightweight proposition in most cases.)

A more significant practical problem with Pantheios is that selecting and specifying the back-end libraries
with which one wishes to link can be quite a verbose activity. For example, one of the test applications that
ships with the Pantheios distribution links to.

pant hei os. core. $(COMP_TAG) . nt . debug. i b /'l core
pant hei os. fe. sinple. $(COMP_TAG). nt . debug.lib /1l stock front-end: fe.sinple
pant hei os. be.lrsplit.$(COVMP_TAG) . nt.debug.lib /'l stock back-end: be.lrsplit

pant hei os. bel . Wn32Consol e. $(COWP_TAG) . nt . debug.lib // back-end (local): Wn32 Console
pant hei os. bec. Wn32Consol e. $(COMP_TAG) . nt . debug.lib // back-end (common): W n32 Consol e
pant hei os. ber. W n32sysl og. $(COW_TAG) . nt . debug.lib // back-end (renote): Wn32 syslog
pant hei os. bec. W n32sysl og. $(COW_TAG) . nt . debug.lib // back-end (conmon): W n32 syslog

(where $(COMP_TAQG) is the compiler identity tag, e.g. dmfor Digital Mars, vc71 for Visual C++ 7.1). And
that's just for the multithreaded debug build. Each additional configuration (e.g. a single-threaded release
build) would have an equivalent list of library names. To be sure, this is a worst-case scenario, but even
more "normal" cases can see four or five elements. Thus, for those compilers that support implicit linking,
users can simply include the requisite Pantheios implicit-link headers in one of the compilation units of their
application, as in:

#incl ude <pantheios/inplicit_link/core.h>

#i ncl ude <pantheios/inplicit_link/fe_sinple.h>

i nk/ be_lrsplit.h>

i nk/ bel _"W n32Consol e. h>
i nk/ ber _W n32Consol e. h>
i nk/ bel _W n32sysl og. h>
#incl ude <pantheios/inplicit_link/ber_Wn32sysl og. h>

#incl ude <pantheios/inplicit_
#i ncl ude <pantheios/inplicit_
#incl ude <pantheios/inplicit_
#i ncl ude <pantheios/inplicit_

However, we'd argue that even in cases where you must use explicit linking, this is something readily taken
care of in your makefiles or other project files, and can easily be automated. We also provide the Win32
library selector tool (Figure 3) with which you can select the required permutation and format, copy it to the
clipboard, and paste it into your makefiles and/or IDE dialogs.

Figure X. Using the library selector for Explicit Linking

An Introduction to Pantheios: Type-safe,
Efficient, Extensible, Generic Logging

Matthew Wilson, Synesis Software,
matthew@synesis.com.au

Garth Lancaster, MBF,

garth.Lancaster@mbf.com.au

= Synesis Software - Pantheios Library Selector i

Compiler: Ilntel CAC++ w8 j Yariants: Single-Threaded Debug j
. Single-Threaded Debug
[Mo exceptions Single-Threaded Releaze
Multithreaded [ebug
—Front-End Sdulbithreaded Feleaze
: DLL Drebug
W Use fe.simple DLL Release
—Back-End
¥ Usze localfremote zpliting
Libraries: Remote:

Campotient | Library Mame a | | Comparent | Library Mame -
COM Error Object pantheios. 1. bel. COME COk Error Object pantheios. 1. ber. COME
fprinte[] pantheiog. 1.bel fprintf.i fprintf[] pantheios 1. ber fprintf.i
fprintf[] [with Time] pantheios. 1. bel fprintf fprintf[] [with Time] pantheios.1.ber fprintf.
rull pantheioz. 1. bel.null. il rll pantheios. 1. ber. null.ich
zyzlog pantheioz. 1. bel.syzlog— | spslog pantheios. 1. ber. zpzlog—
Wind2 zuzlog pantheiog. 1.bel Win3z2 Wind2 zpzlog pantheios 1. berwin3dz2
WindZ Conzole pantheioz. 1.bel Win3z2 Win3d2 Conzole pantheioz 1. berWin3dz2
"Wind2 Conzole [... pantheios. .I:uel.'W'iri?Ij Windz2 Conzole [... pantheios.].berwind2 =
1| | 3 4] | 3

Separatar: I[Earriage Feturn [hria)] _:I Wersian: II T!

Output;

I E wplicit

pantheios. 1. core.icl3.debug. lib

pantheios. 1.fe. zimple.icl3. debug.lib
pantheios, 1.be. rzplit.icl8. debug. lib
pantheios. 1. bec Win32Conzale.iclS. debug.lib
pantheios. 1. bel WindZ2Conzaole.icl3. debug. lib

4

Implicit I
il

| Copy to chpboard I About...

Figure X. Uding the library selector for Implicit Linking

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matthew@synesis.com.au

Garth Lancaster, MBF,

garth.Lancaster@mbf.com.au

= Synesis Software - Pantheios Library Selector ed |
Compiler: Ilntel CAC++ w8 _";I Yariants: ISingIe-Threaded Cebug j
. Single-Threaded Debug
[Mo exceptions Single-Threaded Releaze
Multithreaded [ebug
—Front-End Sdulbithreaded Feleaze
: DLL Drebug
¥ Lze fesimple DLL Releaze
—Back-End
¥ Usze localfremote zpliting

Libraries: Remote:

Campotient | Library Mame a | | Comparent | Library Mame -
COM Error Object pantheios. 1. bel. COME COk Error Object pantheios. 1. ber. COME
fprinte[] pantheiog. 1.bel fprintf.i fprintf[] pantheios 1. ber fprintf.i
fprintf[] [with Time] pantheios. 1. bel fprintf fprintf[] [with Time] pantheios.1.ber fprintf.
rull pantheioz. 1. bel.null. il rll pantheios. 1. ber. null.ich
zyzlog pantheioz. 1. bel.syzlog— | spslog pantheios. 1. ber. zpzlog—
Wind2 zuzlog pantheiog. 1.bel Win3z2 Wind2 zpzlog pantheios 1. berwin3dz2
WindZ Conzole pantheioz. 1.bel Win3z2 Win3d2 Conzole pantheioz 1. berWin3dz2
"Wind2 Conzole [... pantheios. .I:uel.'W'iri?Ij Windz2 Conzole [... pantheios.].berwind2 =
1| | 3 4] | 3

Separator. Il'l;alliau;n-:- Betorer (S]] 'I Wersion: II v!

Dutput: E #plicit ” Implicit

Hinclude <pantheioz Amplicit_link/core. b

finclude <pantheiozdimplicit_link.fe. zimple. b

finclude <pantheiozdmplicit_link.Ar.plit. bz

finclude <pantheiozdimplicit_link/bel Win32Conzale. b
finclude <pantheiozAmplicit_link/ber Wind2ayslog, b

=

| Copy to chpboard I About... LCloze

Efficiency

The efficiency gains touted earlier in respect of the type-tunnelling, one-time conversion, and at-most one
allocation [afforded us by the use of auto_buffer (UP)] are not mere thought experiment. We have conducted
tests that demonstrate dramatic performance advantages over the IOStreams, and even over fprintf()-

family log APIs. We intend to present the details of a thorough analysis at a later time. [As a taster, the initial

perf results are tagged on at the end of the article. They'll be expounded soon.]
There are three ways in which this is efficient.

1. The test is before conversion.

2. Uses auto-buffer and manual (albeit algorithmic) string concatenation to avoid memory allocation
inside the API unless total string length is > 2048. (This figure can be configured at compile-time.)
What this means is that even lengthy and seemingly complex expressions can actually be logged

without a single trip to the heap!

3. Use of the string access shims means that the length for each log statement element is calculated
exactly once, and for those types (e.g. std::string) that already know their length this

"calculation” is simply an invocation of the requisite constant-time accessor (i.e. si ze()).

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘aer‘;vh@ﬁﬂitse-rco&‘;“

garth.Lancaster@mbf.com.au

4. Since each element’s length is known prior to the preparation of the output statement, concatenation
of the strings is much faster than any formatting scheme (e.g. printf (), IOStreams) where
elements are treated heterogeneously by the formatting function.

5. Statement elements do not have to be nul-terminated, or expressed as nul-terminated strings.

6. Back-ends do not need to calculate length or append a nul-terminating character, as both are
(known and) provided by the core.

6:7. The Pantheios core is lock-free, not even using atomic integer operations. Notwithstanding the
characteristics of particular back-ends, the output from one thread is essentially independent that of
any other.

aways know how long each dement is
b. Efficiency. In addition to the avoidance of unnecessary cogts, when logging is carried out, it

isextremdy efficient. By usng the STLSoft aut o_buf f er classtemplate [EVAB] at most
one memory allocation is carried out by the core; in al practica (i.e non-test) cases we've
encountered in our use of Pantheios the use of the hegp has been avoided completely.
Further, the core passes the prepared log message in the form of a nul-terminated c-style
gring and its length to the back-end API, which means that those transports that need to
know length don't haveto cdl st r 1 en() . Findly, once initidised, the core is entirely
context and lock free, not even requiring cals to atomic integer operations.

Future direction

We believe that we have a solid architecture, and that the balance of efficiency, genericity and type-safety
afforded by the use of Type Tunnelling is a long-term winner. However, there are areas where we consider
that there may be room for future improvement, and we will continue to explore them. Further, we look
forward to feedback from readers on the libraries.

We are currently considering a version 2 of the libraries, which would use advanced template meta-
programming (TMP) techniques, such as Type Detection and Type Selection [lIA], to infer the type — string,
string-able, integer, floating-point or other — and select the appropriate converter automatically. Naturally, this
would have the disadvantages of a reduced compatible compiler population and nastier compiler messages
in the cases of TMP errors, but would it make the-application code even more succinct and intuitive than it is
already.

Cater for wchar_t encoding.

type) This is now catered for. The ostensible constants, e.g. pant hei os: : debug, pant hei os::al ert,
are actually instances of types that have both implicit conversion (to i nt) and a function call operator. The

latter allows for succinct use of the other 24-bits of the integer type carrying the severity. What this means is
that the following statement:

pant hei os: : 1 og(pantheios::alert, "message");

emits a message " nmessage" at severity level alert (1), and the following

pant hei os: : 1 og(pant hei os::alert(55), "message");

emits a message "nessage" at severity level 0x3701. The given argument value is shifted up 8 hits, and
may be used by front-end and/or back-end as the user requires. (All stock back-ends are implemented to
ignore all but the low 8bits, which means they’re compatible with such uses as any user may wish to put the
upper 24-bits.)

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘aer‘;vh@ﬁﬂzssitse-rco&‘;“

garth.Lancaster@mbf.com.au

Pantheios.COM — even before its public release, Pantheios has spawned an adjunct project. Pantheios.COM
(which will be available from pantheios.org along with the main project on its release) is a COM logging
component that follows the same principle of severity level-test prior to statement aggregation for efficiency.
Although an entirely self-contained component — i.e. a single DLL with no non-system dependencies —
Pantheios.COM uses several back-end implementations from Pantheios in its logging coclasses.

Summary

We have presented the Pantheios logging API library, and demonstrated how it represents an optimal mix of
expressiveness, succinctness, genericity and extensibility, flexibility, efficiency and type-safety. We have

: o nation ot § Y 7

We have introduced the stock front and back-end libraries that come with the Pantheios distribution, and
shown how Pantheios may be

Because log statement parameters do not undergo conversion until after the-it is determined whether to emit
a message, there is no need on performance grounds for compile-time measures to elide certain message
classes. This means that when your system is in production, and something goes wrong, you will still be able

to turn on the most verbose output levels—and-youll save yourjob-in-the process.

We have shown how Pantheios can make UNIX-sysl og() logging a virtual type-safe and efficiency no-
brainer. Further, we have shown that Pantheios can be applied to arbitrary logging streams, via stock or
custom back-ends.

Pantheios is open-source (available from http://pantheios.sourceforge.net) under the BSD license—and. we
invite you to-use the project-and contribute—It's only dependency, on-facilitiesother than—over and above the
C and C++ standard libraries and the-ARls—native to-UNX—and- Win32operating systems_APIs, is on the
STLSoft libraries fttp:/stlsoft.org, version 1.9.1 beta 18 or later), which provide the aut o_buf f er, String
Access Shims, iterator adaptors, and sundry other components._We invite you to use the project and
contribute.

Since its development by Synesis Software in 2003/4, it has now become our logging standard. All common
dynamic libraries, COM components, Shell extensions (see http://shellext.com), system tools, development
tools, plug-ins, and all C++/COM products ceveloped for clients use Pantheios, even (or is that especially)
for performance-sensitive servers. It has proven itself in terms of simplicity of use, effectiveness and
efficiency many times over in that time. By the time you read this article, the http://pantheios.org website will
contain the 1.0.1. distribution, or, at worst, the latest 1.0.1. beta.

About the authors

Matthew Wilson

Matthew is a development consultant for Synesis Software, and creator of the STLSoft libraries. He is author
of Imperfect C++ (Addison-Wesley, 2004), and is currently working on his modicum opus, Extended STL,
volume 1 (to be published in 2006); the internals of Pantheios feature large in volume 1. Matthew can be
contacted via http://imperfectcplusplus.com/.

Garth Lancaster

Production manager and all-round technoscenti at MBF, one of Australia's largest medical insurers, Garth is
an avid connoisseur of other people's libraries, resorts to writing his own only when it's really worthwhile._He
can be contacted at Garth.Lancaster@mbf.com.au.

An Introduction to Pantheios: Type-safe, Matthew Wilson, Synesis Software,

Efficient, Extensible, Generic Logging matg‘gr‘ivh@izmﬁtséfohrﬂ”;“

garth.Lancaster@mbf.com.au

Notes and references

[IC++]
[EVAB] auto_buffer
[String Access Shimg] " Generdised String Manipulation”

"Efficent Variable Automatic Buffers'
Performance ‘
Logging Off logprintf (pre) logprintf (post) 10Stream Log4cpp Pantheios l0g4cxxBoost.Log |
1 (strings) 58 1705 3505 30 9 |
2 (numbers) 7 5063 10431 26 17 |
3 (misc mix) 6903 10199 14578 6946 18 |
I
Logging On |
logprintf (pre) logprintf (post) |0Stream Log4cpp Pantheios |
1 (strings) 10934 10760 12913 22982 10158 |
2 (numbers) 14914 14802 21545 27593 15945 |
3 (misc mix) 22957 23254 27501 38395 23597 |

Performance of logging libraries with logging "On"

40000W
35000+
30000+
25000
20000+
15000 -

Time (ms) for 1M
statements

O 1 (strings)
2 (numbers)

3 (misc mix) O 3 (misc mix)

1 (strings) Scenario

logprintf (pre)
logprintf (post)
I0Stream
Log4cpp
Pantheios

Logging library

An Introduction to Pantheios: Type-safe,
Efficient, Extensible, Generic Logging

Matthew Wilson, Synesis Software,
matthew@synesis.com.au

Garth Lancaster, MBF,
garth.Lancaster@mbf.com.au

Time (ms) for 1M
statements

160001
14000+
12000+
10000
8000
60007

WA

4000
2000
O_

logprintf (pre) “\

logprintf (post)

Logging library

|0Stream

Log4cpp

Performance of logging libraries with logging " Off"

Pantheios

@1 (strings)
2 (numbers)
0 3 (misc mix)

3 (misc mix)
2 (numbers)
1 (strings) Scenario

